Some Analytical Results on the Seiberg-Witten Equations and the Bogomolny Equations
Citation
Sun, Weifeng. 2021. Some Analytical Results on the Seiberg-Witten Equations and the Bogomolny Equations. Doctoral dissertation, Harvard University Graduate School of Arts and Sciences.Abstract
This thesis contains some analytical results on the Bogomolny equations and the Seiberg-Witten equations.Chapter one studies the Bogomolny equations. In this chapter, first I briefly introduce Taubes' analytical approach to studying the moduli space of the Bogomolny equations with certain asymptotic conditions on R^3. Then I illustrate how to use an adaption of Taubes' method to study the Bogomolny equations on R^3 with a knot singularity.
In chapter two, the first two sections consist of a brief introduction to the Seiberg-Witten theory and the ECH (embedded contact homology) theory on a contact manifold. In particular, Hutchings' ECH spectral invariants are introduced here. The third section studies the asymptotic behaviors of the ECH spectral invariants. This study is based on some analysis in the Seiberg-Witten theory.
Appendix A includes some analytical details which tie up the loose ends in chapter one. Appendix B gives a rigorous definition of the min-max action in Seiberg-Witten theory that is used in chapter two.
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37368203
Collections
- FAS Theses and Dissertations [6902]
Contact administrator regarding this item (to report mistakes or request changes)