Effect of Molecular Structure of Quinones and Carbon Electrode Surfaces on the Interfacial Electron Transfer Process
View/ Open
Author
Jing, Yan
Mejia-Mendoza, Luis Martin
Vazquez-Mayagoitia, Álvaro
Aspuru-Guzik, Alán
Published Version
https://doi.org/10.1021/acsaem.9b02357Metadata
Show full item recordCitation
De Porcellinis, Diana, Yan Jing, Emily Kerr, Luis Martin Mejia-Mendoza, Álvaro Vazquez-Mayagoitia, Alán Aspuru-Guzik, Graziela Cristina Sedenho et al. "Effect of Molecular Structure of Quinones and Carbon Electrode Surfaces on the Interfacial Electron Transfer Process." ACS Applied Energy Materials 3, no. 2 (2020): 1933-1943. DOI: 10.1021/acsaem.9b02357Abstract
Quinones can undergo thermodynamically reversible proton-coupled electron transfer reactions and are being applied as electroactive compounds in aqueous organic batteries. However, the electrochemical reversibility of these compounds is affected not only by their molecular structure but also by the properties of a carbon-based electrode surface. This study combines experimental and theoretical approaches to understand this dependence. We study the electron transfer kinetics of two synthesized quinone derivatives and two commercially available ones with a glassy carbon, a highly ordered pyrolytic graphite, and a high-edge-density graphite electrode (HEDGE). The electrochemical reversibility is notably improved on the HEDGE, which shows a higher density of defects and presents oxygenated functional groups at its surface. The electron transfer kinetics are controlled by adsorbed species onto the HEDGE. Molecular dynamics simulation and quantum mechanics calculations suggest defects with oxygen-containing functional groups, such as C–O and C═O, on HEDGE surfaces drive the interaction with the functional groups of the molecules, during physisorption from van der Waals forces. The presence of sulfonic acid side groups and a greater number of aromatic rings in the molecular structure may contribute to a higher stabilization of quinone derivatives on HEDGEs. We propose that high-performance carbon-based electrodes can be obtained without catalysts for organic batteries, by the engineering of carbon-based surfaces with edge-like defects and oxygenated functional groups.Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAPCitable link to this page
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37370985
Collections
- FAS Scholarly Articles [18176]
Contact administrator regarding this item (to report mistakes or request changes)