Show simple item record

dc.contributor.authorLee, Hyunkwang
dc.contributor.authorYune, Sehyo
dc.contributor.authorMansouri, Mohammad
dc.contributor.authorKim, Myeongchan
dc.contributor.authorTajmir, Shahein H.
dc.contributor.authorGuerrier, Claude E.
dc.contributor.authorEbert, Sarah A.
dc.contributor.authorPomerantz, Stuart
dc.contributor.authorRomero, Javier
dc.contributor.authorKamalian, Mohammad
dc.contributor.authorGonzalez, Ramon
dc.contributor.authorLev, Michael
dc.contributor.authorDo, Synho
dc.date.accessioned2022-03-21T16:48:57Z
dc.date.issued2018-12-17
dc.identifier.citationLee, Hyunkwang, Sehyo Yune, Mohammad Mansouri, Myeongchan Kim, Shahein H. Tajmir, Claude E. Guerrier, Sarah A. Ebert et al. "An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets." Nature Biomedical Engineering 3, no. 3 (2018): 173-182. DOI: 10.1038/s41551-018-0324-9
dc.identifier.issn2157-846Xen_US
dc.identifier.urihttps://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37371238*
dc.description.abstractOwing to improvements in image recognition via deep learning, machine-learning algorithms could eventually be applied to automated medical diagnoses that can guide clinical decision-making. However, these algorithms remain a 'black box' in terms of how they generate the predictions from the input data. Also, high-performance deep learning requires large, high-quality training datasets. Here, we report the development of an understandable deep-learning system that detects acute intracranial haemorrhage (ICH) and classifies five ICH subtypes from unenhanced head computed-tomography scans. By using a dataset of only 904 cases for algorithm training, the system achieved a performance similar to that of expert radiologists in two independent test datasets containing 200 cases (sensitivity of 98% and specificity of 95%) and 196 cases (sensitivity of 92% and specificity of 95%). The system includes an attention map and a prediction basis retrieved from training data to enhance explainability, and an iterative process that mimics the workflow of radiologists. Our approach to algorithm development can facilitate the development of deep-learning systems for a variety of clinical applications and accelerate their adoption into clinical practice.en_US
dc.language.isoen_USen_US
dc.publisherSpringer Science and Business Media LLCen_US
dc.relationNature Biomedical Engineeringen_US
dc.relation.isversionofdoi:10.1038/s41551-018-0324-9en_US
dash.licenseMETA_ONLY
dc.subjectComputer Science Applicationsen_US
dc.subjectBiomedical Engineeringen_US
dc.subjectMedicine (miscellaneous)en_US
dc.subjectBioengineeringen_US
dc.subjectBiotechnologyen_US
dc.titleAn explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasetsen_US
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden_US
dc.relation.journalNature Biomedical Engineeringen_US
dash.depositing.authorGonzalez, Ramon
dc.date.available2022-03-21T16:48:57Z
dash.affiliation.otherHarvard John A. Paulson School of Engineering and Applied Sciencesen_US
dc.identifier.doi10.1038/s41551-018-0324-9
dc.source.journalNat Biomed Eng
dash.waiver.reasonNature Biomedical Engineering editorial teams request an open-access waiver.en_US
dash.source.volume3en_US
dash.source.page173-182en_US
dash.source.issue3en_US
dash.contributor.affiliatedKamalian, Mohammad
dash.contributor.affiliatedRomero, Javier
dash.contributor.affiliatedGonzalez, Ramon
dash.contributor.affiliatedPomerantz, Stuart
dash.contributor.affiliatedLev, Michael
dash.contributor.affiliatedDo, Synho


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record