Show simple item record

dc.contributor.authorWu, Min
dc.contributor.authorBahari, Meisam
dc.contributor.authorJing, Yan
dc.contributor.authorAmini, Kiana
dc.contributor.authorFell, Eric
dc.contributor.authorGeorge, Thomas
dc.contributor.authorGordon, Roy
dc.contributor.authorAziz, Michael
dc.date.accessioned2022-03-23T16:55:18Z
dc.date.issued2022-02-24
dc.identifier.citationWu, Min, Meisam Bahari, Yan Jing, Kiana Amini, Eric M Fell, Thomas Y George, Roy G Gordon, and Michael J Aziz. "Highly Stable, Low Redox Potential Quinone for Aqueous Flow Batteries." Batteries & Supercaps, 2022-02-24.en_US
dc.identifier.issn2566-6223en_US
dc.identifier.issn2566-6223en_US
dc.identifier.urihttps://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37371259*
dc.description.abstractAqueous organic redox flow batteries are promising candidates for large-scale energy storage. However, the design of stable and inexpensive electrolytes is challenging. Here, we report a highly stable, low redox potential, and potentially inexpensive negolyte species, sodium 3,3′,3′′,3′′′-((9,10-anthraquinone-2,6-diyl)bis(azanetriyl))tetrakis(propane-1-sulfonate) (2,6-N-TSAQ), which is synthesized in a single step from inexpensive precursors. Pairing 2,6-N-TSAQ with potassium ferrocyanide at pH=14 yielded a battery with the highest open-circuit voltage, 1.14 V, of any anthraquinone-based cell with a capacity fade rate <10 %/yr. When 2,6-N-TSAQ was cycled at neutral pH, it exhibited two orders of magnitude higher capacity fade rate. The great difference in anthraquinone cycling stability at different pH is interpreted in terms of the thermodynamics of the anthrone formation reaction. This work shows the great potential of organic synthetic chemistry for the development of viable flow battery electrolytes and demonstrates the remarkable performance improvements achievable with an understanding of decomposition mechanisms.en_US
dc.description.sponsorshipEngineering and Applied Sciencesen_US
dc.language.isoen_USen_US
dc.publisherWileyen_US
dash.licenseMETA_ONLY
dc.subjectElectrochemistryen_US
dc.subjectElectrical and Electronic Engineeringen_US
dc.subjectEnergy Engineering and Power Technologyen_US
dc.titleHighly Stable, Low Redox Potential Quinone for Aqueous Flow Batteriesen_US
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden_US
dc.relation.journalBatteries and Supercapsen_US
dash.depositing.authorAziz, Michael
dc.date.available2022-03-23T16:55:18Z
dc.identifier.doi10.1002/batt.202200009
dash.contributor.affiliatedGeorge, Thomas
dash.contributor.affiliatedBahari, Meisam
dash.contributor.affiliatedAmini, Kiana
dash.contributor.affiliatedJing, Yan
dash.contributor.affiliatedFell, Eric
dash.contributor.affiliatedGordon, Roy
dash.contributor.affiliatedAziz, Michael


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record