Show simple item record

dc.contributor.authorVlassak, Joost
dc.contributor.authorMotemani Sharabiani, Yahya
dc.contributor.authorMcCluskey, Patrick
dc.contributor.authorZhao, Chunwang
dc.contributor.authorTan, Ming J.
dc.contributor.authorTan, Ming
dc.date.accessioned2022-10-31T12:03:13Z
dc.date.issued2011-12
dc.identifier.citationVlassak, Joost, Yahya Motemani Sharabiani, Patrick McCluskey, Chunwang Zhao, Ming J. Tan, Ming Tan. "Analysis of Ti–Ni–Hf shape memory alloys by combinatorial nanocalorimetry." Acta Materialia 59, no. 20 (2011): 7602-7614. DOI: 10.1016/j.actamat.2011.08.026
dc.identifier.issn1359-6454en_US
dc.identifier.urihttps://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37373453*
dc.description.abstractThe martensitic transformation in Ti-Ni-Hf thin films with ultra-fine grain structure has been analyzed as a function of composition using a high-throughput array of nanocalorimeters. The martensite-austenite transformation temperature is significantly lower than in bulk Ti-Ni-Hf, but increases linearly with Hf content at a rate comparable to bulk Ti-Ni-Hf. The response to high- temperature cycling (22oC < T < 850oC) changes with Ni concentration. For Ni ≤ 47 at%, the transformation temperature increases during high-temperature cycling because precipitation of (Ti1-x,Hfx)2Ni enriches the surrounding matrix in Hf; for Ni ≥ 47.7 at%, precipitation of the same phase gradually suppresses the transformation. Low-temperature cycling (22oC < T < 450oC) causes the transformation temperature to initially decrease and then stabilize. Relaxation of internal stresses by dislocations generated during thermal cycling is suggested as the active mechanism. Thermal cycling stability of the films is improved compared to previous studies on bulk Ti-Ni-Hf. This is attributed to the very small grain size (18 ± 5 nm) of the samples. Alloys with superior thermal cycling stability are identified and the ability to control the transformation temperature through multiple thermal cycling is demonstrated.en_US
dc.description.sponsorshipEngineering and Applied Sciencesen_US
dc.language.isoen_USen_US
dc.publisherElsevier BVen_US
dash.licenseOAP
dc.subjectMetals and Alloysen_US
dc.subjectPolymers and Plasticsen_US
dc.subjectCeramics and Compositesen_US
dc.subjectElectronic, Optical and Magnetic Materialsen_US
dc.titleAnalysis of Ti–Ni–Hf shape memory alloys by combinatorial nanocalorimetryen_US
dc.typeJournal Articleen_US
dc.description.versionAccepted Manuscripten_US
dc.relation.journalActa Materialiaen_US
dc.date.available2022-10-31T12:03:13Z
dc.identifier.doi10.1016/j.actamat.2011.08.026
dc.source.journalActa Materialia
dash.source.volume59en_US
dash.source.page7602-7614en_US
dash.source.issue20en_US
dash.contributor.affiliatedMcCluskey, Patrick
dash.contributor.affiliatedMotemani Sharabiani, Yahya
dash.contributor.affiliatedZhao, Chunwang
dash.contributor.affiliatedVlassak, Joost


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record