Show simple item record

dc.contributor.authorLiu, Nian
dc.contributor.authorEmerson, David F.
dc.contributor.authorXu, Jingyang
dc.contributor.authorLazar, Zbigniew
dc.contributor.authorIslam, M. Ahsanul
dc.contributor.authorPark, Junyoung
dc.contributor.authorHolinski, Kara
dc.contributor.authorQiao, Kangjian
dc.contributor.authorWoolston, Benjamin
dc.contributor.authorVidoudez, Charles
dc.contributor.authorGirguis, Peter
dc.contributor.authorStephanopoulos, Gregory
dc.date.accessioned2023-02-17T14:55:06Z
dc.date.issued2019-06
dc.identifier.citationPark, Junyoung O., Nian Liu, Kara M. Holinski, David F. Emerson, Kangjian Qiao, Benjamin M. Woolston, Jingyang Xu, Zbigniew Lazar, M. Ahsanul Islam, Charles Vidoudez, Peter R. Girguis & Gregory Stephanopoulos. 2019. Synergistic Substrate Cofeeding Stimulates Reductive Metabolism. Nature Metabolism. 1: 643–651.en_US
dc.identifier.issn2522-5812en_US
dc.identifier.urihttps://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37374403*
dc.description.abstractAdvanced bioproduct synthesis via reductive metabolism requires coordinating carbons, ATP, and reducing agents, which are generated with varying efficiencies depending on metabolic pathways. Substrate mixtures with direct access to multiple pathways may optimally satisfy these biosynthetic requirements. However, native regulation favoring preferential utilization precludes cells from co-metabolizing multiple substrates. Here we explore mixed substrate metabolism and tailor pathway usage to synergistically stimulate carbon reduction. By controlled cofeeding of superior ATP- and NADPH-generators as “dopant” substrates to cells primarily utilizing inferior substrates, we circumvent catabolite repression and drive synergy in two divergent organisms. Glucose doping in Moorella thermoacetica stimulates CO2 reduction (2.3 g gcell–1 hr–1) into acetate by augmenting ATP synthesis via pyruvate kinase. Gluconate doping in Yarrowia lipolytica accelerates acetate-driven lipogenesis (0.046 g gcell–1 hr–1) by obligatory NADPH synthesis through the pentose cycle. Together, synergistic cofeeding produces CO2-derived lipids with 38% energy yield and demonstrates potential to convert CO2 into advanced bioproducts. This work advances the systems-level control of metabolic networks and CO2 utilization, the most pressing and difficult reduction challenge.en_US
dc.description.sponsorshipOrganismic and Evolutionary Biologyen_US
dc.language.isoen_USen_US
dc.publisherSpringer Science and Business Media LLCen_US
dc.relationNature Metabolismen_US
dash.licenseMETA_ONLY
dc.titleSynergistic Substrate Cofeeding Stimulates Reductive Metabolismen_US
dc.typeJournal Articleen_US
dc.relation.journalNature Metabolismen_US
dash.depositing.authorGirguis, Peter
dash.waiver2019-05-13
dc.date.available2023-02-17T14:55:06Z
dc.identifier.doi10.1038/s42255-019-0077-0
dc.source.journalNat Metab
dash.waiver.reasonNature publishing is requesting it.en_US
dash.source.volume1;6en_US
dash.source.page643-651en_US
dash.contributor.affiliatedPark, Junyoung
dash.contributor.affiliatedWoolston, Benjamin
dash.contributor.affiliatedVidoudez, Charles
dash.contributor.affiliatedGirguis, Peter


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record