Show simple item record

dc.contributor.authorKhan, Saiqa I.
dc.contributor.authorBlumrosen, Gaddi
dc.contributor.authorVecchio, Daniela
dc.contributor.authorGolberg, Alexander
dc.contributor.authorHamblin, Michael
dc.contributor.authorMcCormack, Michael
dc.contributor.authorYarmush, Martin
dc.contributor.authorAusten, William
dc.date.accessioned2018-12-19T12:22:53Z
dc.date.issued2015-09-09
dc.identifier.citationKhan, Saiqa I., Gaddi Blumrosen, Daniela Vecchio, Alexander Golberg, Michael C. McCormack, Martin L. Yarmush, Michael R. Hamblin, and William G. Austen Jr. 2015. “Eradication of Multidrug-Resistant Pseudomonas Biofilm with Pulsed Electric Fields.” Biotechnology and Bioengineering 113 (3): 643–50. https://doi.org/10.1002/bit.25818.en_US
dc.identifier.issn0006-3592en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:37938452*
dc.description.abstractBiofilm formation is a significant problem, accounting for over eighty percent of microbial infections in the body. Biofilm eradication is problematic due to increased resistance to antibiotics and antimicrobials as compared to planktonic cells. The purpose of this study was to investigate the effect of Pulsed Electric Fields (PEF) on biofilm-infected mesh. Prolene mesh was infected with bioluminescent Pseudomonas aeruginosa and treated with PEF using a concentric electrode system to derive, in a single experiment, the critical electric field strength needed to kill bacteria. The effect of the electric field strength and the number of pulses (with a fixed pulse length duration and frequency) on bacterial eradication was investigated. For all experiments, biofilm formation and disruption were confirmed with bioluminescent imaging and Scanning Electron Microscopy (SEM). Computation and statistical methods were used to analyze treatment efficiency and to compare it to existing theoretical models. In all experiments 1500V are applied through a central electrode, with pulse duration of 50s, and pulse delivery frequency of 2Hz. We found that the critical electric field strength (Ecr) needed to eradicate 100-80% of bacteria in the treated area was 121 +/- 14V/mm when 300 pulses were applied, and 235 +/- 6.1V/mm when 150 pulses were applied. The area at which 100-80% of bacteria were eradicated was 50.5 +/- 9.9mm(2) for 300 pulses, and 13.4 +/- 0.65mm(2) for 150 pulses. 80% threshold eradication was not achieved with 100 pulses. The results indicate that increased efficacy of treatment is due to increased number of pulses delivered. In addition, we that showed the bacterial death rate as a function of the electrical field follows the statistical Weibull model for 150 and 300pulses. We hypothesize that in the clinical setting, combining systemic antibacterial therapy with PEF will yield a synergistic effect leading to improved eradication of mesh infections.en_US
dc.language.isoen_USen_US
dc.publisherWileyen_US
dash.licenseOAP
dc.titleEradication of Multidrug-Resistant Pseudomonas Biofilm With Pulsed Electric Fieldsen_US
dc.title.alternativeEradication of Multidrug-Resistant Pseudomonas
dc.typeJournal Articleen_US
dc.description.versionAccepted Manuscripten_US
dc.relation.journalBiotechnology and Bioengineeringen_US
dash.depositing.authorHamblin, Michael
dc.date.available2018-12-19T12:22:53Z
dash.workflow.comments1Science Serial ID 16146en_US
dc.identifier.doi10.1002/bit.25818
dc.source.journalBiotechnol. Bioeng.
dash.source.volume113;3
dash.source.page643-650
dash.contributor.affiliatedMcCormack, Michael
dash.contributor.affiliatedAusten, William
dash.contributor.affiliatedHamblin, Michael
dash.contributor.affiliatedGolberg, Alexander
dash.contributor.affiliatedYarmush, Martin
dc.identifier.orcid0000-0001-6431-4605


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record