Juvenile Chemical Sediments and the Long Term Persistence of Water at the Surface of Mars

DSpace/Manakin Repository

Juvenile Chemical Sediments and the Long Term Persistence of Water at the Surface of Mars

Citable link to this page


Title: Juvenile Chemical Sediments and the Long Term Persistence of Water at the Surface of Mars
Author: Tosca, Nicholas J.; Knoll, Andrew Herbert

Note: Order does not necessarily reflect citation order of authors.

Citation: Tosca, Nicholas J., and Andrew Herbert Knoll. 2009. Juvenile chemical sediments and the long term persistence of water at the surface of Mars. Earth and Planetary Science Letters 286(3-4): 379-386.
Full Text & Related Files:
Abstract: Chemical sediments and the aqueous alteration products of volcanic rocks clearly indicate the presence of water, at least episodically, at the Martian surface. Compared to similar materials formed on the early Earth, however, Martian deposits are juvenile, or diagenetically under-developed. Here we examine the role of water in facilitating various diagenetic reactions and evaluate the predicted effects of time and temperature for aqueous diagenesis on Mars. Using kinetic formulations based on terrestrial sedimentary geology, we quantify the integrated effects of time and temperature for a range of possible burial and thermal histories of precipitated minerals on Mars. From this, we estimate thresholds beyond which these precipitates should have been converted to the point of non-detection in the presence of water. Surface water has been shown to be at least episodically present in recent times. Nonetheless, the integrated duration of aqueous activity recorded over geologically long intervals by hydrated amorphous silica, smectite clays and Fe-sulfate minerals suggests that where these minerals occur water did not persist much beyond their initial deposition. This geochemical conclusion converges with geomorphologic studies that suggest water limitation during the late Noachian–Hesperian peak of valley formation and a still more limited footprint of water since that time. In addition to documenting the presence of water and its chemical properties, a complete assessment of potentially habitable environments on Mars should address the timescales on which liquid water has persisted and the timing of aqueous episodes relative to major planetary events.
Published Version: doi:10.1016/j.epsl.2009.07.004
Terms of Use: This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:3934553
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search