Ynot: Dependent Types for Imperative Programs

DSpace/Manakin Repository

Ynot: Dependent Types for Imperative Programs

Citable link to this page


Title: Ynot: Dependent Types for Imperative Programs
Author: Nanevski, Aleksandar; Morrisett, John Gregory; Shinnar, Avraham Ever; Govereau, Paul; Birkedal, Lars

Note: Order does not necessarily reflect citation order of authors.

Citation: Nanevski, Aleksandar, Greg Morrisett, Avi Shinnar, Paul Govereau, and Lars Birkedal. 2008. Ynot: Dependent types for imperative programs. In Proceedings of the 13th ACM SIGPLAN International Conference on Functional Programming: September 20-28, 2008, Victoria, BC, Canada, ed. J. Hook, 229-240. New York, N.Y.: ACM Press.
Access Status: Full text of the requested work is not available in DASH at this time (“dark deposit”). For more information on dark deposits, see our FAQ.
Full Text & Related Files:
Abstract: We describe an axiomatic extension to the Coq proof assistant, that supports writing, reasoning about, and extracting higher-order, dependently-typed programs with side-effects. Coq already includes a powerful functional language that supports dependent types, but that language is limited to pure, total functions. The key contribution of our extension, which we call Ynot, is the added support for computations that may have effects such as non-termination, accessing a mutable store, and throwing/catching exceptions.

The axioms of Ynot form a small trusted computing base which has been formally justified in our previous work on Hoare Type Theory (HTT). We show how these axioms can be combined with the powerful type and abstraction mechanisms of Coq to build higher-level reasoning mechanisms which in turn can be used to build realistic, verified software components. To substantiate this claim, we describe here a representative series of modules that implement imperative finite maps, including support for a higher-order (effectful) iterator. The implementations range from simple (e.g., association lists) to complex (e.g., hash tables) but share a common interface which abstracts the implementation details and ensures that the modules properly implement the finite map abstraction.
Published Version: http://portal.acm.org/citation.cfm?id=1411204.1411237
Other Sources: http://ynot.cs.harvard.edu/papers/ynot08.pdf
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:3980866
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search