Show simple item record

dc.contributor.advisorStrominger, Andrew
dc.contributor.authorLupsasca, Alexandru Victor
dc.date.accessioned2019-05-20T10:24:29Z
dc.date.created2017-05
dc.date.issued2017-05-15
dc.date.submitted2017
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:40046542*
dc.description.abstractThis work represents a novel application of an old tool---conformal symmetry---to a new arena: black hole astrophysics. Emergent conformal symmetries near critical points play a profound role in modern condensed matter and particle physics. A maximally rotating black hole (one that saturates the Kerr bound |angular momentum| <= mass^2) can be viewed as a critical point in astronomy. In this extremal regime, the black hole throat---the region of spacetime near the event horizon---grows to infinite size and develops an enhanced isometry group. General relativity predicts that this geometrically-realized global conformal symmetry extends to an even larger emergent infinite-dimensional local conformal symmetry. This observation suggests that physics near extremal black holes should be constrained by conformal symmetry in much the same way as many near-critical condensed matter systems are governed by conformal field theories. Proceeding from these insights, this thesis exploits the conformal symmetry of rapidly spinning black holes to determine universal properties of near-horizon fields and geodesics. Analytic expressions are derived for the limiting form of the electromagnetic field and plasma magnetosphere, and potential signatures of conformal symmetry in the sky are investigated. These results bear direct relevance to the characterization of electromagnetic emissions from the vicinity of an extremal black hole, an outstanding problem that now arises at the experimental frontier of observational astronomy.
dc.description.sponsorshipPhysics
dc.format.mimetypeapplication/pdf
dc.language.isoen
dash.licenseLAA
dc.subjectPhysics, Theory
dc.subjectPhysics, Elementary Particles and High Energy
dc.subjectPhysics, Astronomy and Astrophysics
dc.titleThe Maximally Rotating Black Hole as a Critical Point in Astronomy
dc.typeThesis or Dissertation
dash.depositing.authorLupsasca, Alexandru Victor
dc.date.available2019-05-20T10:24:29Z
thesis.degree.date2017
thesis.degree.grantorGraduate School of Arts & Sciences
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy
dc.contributor.committeeMemberJafferis, Daniel
dc.contributor.committeeMemberFranklin, Melissa
dc.type.materialtext
thesis.degree.departmentPhysics
dash.identifier.vireohttp://etds.lib.harvard.edu/gsas/admin/view/1687
dc.description.keywordsblack hole, plasma magnetosphere, force-free electrodynamics
dash.author.emailalupsasca@gmail.com


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record