Evolutionary Stability on Graphs
Published Version
https://doi.org/10.1016/j.jtbi.2008.01.005Metadata
Show full item recordCitation
Ohtsuki, Hisashi, and Martin A. Nowak. 2008. Evolutionary stability on graphs. Journal of Theoretical Biology 251(4): 698-707.Abstract
Evolutionary stability is a fundamental concept in evolutionary game theory. A strategy is called an evolutionarily stable strategy (ESS), if its monomorphic population rejects the invasion of any other mutant strategy. Recent studies have revealed that population structure can considerably affect evolutionary dynamics. Here we derive the conditions of evolutionary stability for games on graphs. We obtain analytical conditions for regular graphs of degree \(k > 2\). Those theoretical predictions are compared with computer simulations for random regular graphs and for lattices. We study three different update rules: birth–death (BD), death–birth (DB), and imitation (IM) updating. Evolutionary stability on sparse graphs does not imply evolutionary stability in a well-mixed population, nor vice versa. We provide a geometrical interpretation of the ESS condition on graphs.Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4054433
Collections
- FAS Scholarly Articles [18172]
Contact administrator regarding this item (to report mistakes or request changes)