Show simple item record

dc.contributor.authorGlenn, David
dc.contributor.authorBucher, Dominik
dc.contributor.authorLee, Junghyun
dc.contributor.authorLukin, Mikhail
dc.contributor.authorPark, Hongkun
dc.contributor.authorWalsworth, Ronald
dc.date.accessioned2019-07-22T19:51:38Z
dc.date.issued2018-03
dc.identifier.citationGlenn, David R., Dominik B. Bucher, Junghyun Lee, Mikhail D. Lukin, Hongkun Park, and Ronald L. Walsworth. 2018. "High-Resolution Magnetic Resonance Spectroscopy Using a Solid-State Spin Sensor." Nature 555: 351-354.en_US
dc.identifier.issn0028-0836en_US
dc.identifier.issn1476-4687en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:40986321*
dc.description.abstractQuantum systems that consist of solid-state electronic spins can be sensitive detectors of nuclear magnetic resonance (NMR) signals, particularly from very small samples. For example, nitrogen–vacancy centres in diamond have been used to record NMR signals from nanometre-scale samples1,2,3, with sensitivity sufficient to detect the magnetic field produced by a single protein4. However, the best reported spectral resolution for NMR of molecules using nitrogen–vacancy centres is about 100 hertz5. This is insufficient to resolve the key spectral identifiers of molecular structure that are critical to NMR applications in chemistry, structural biology and materials research, such as scalar couplings (which require a resolution of less than ten hertz6) and small chemical shifts (which require a resolution of around one part per million of the nuclear Larmor frequency). Conventional, inductively detected NMR can provide the necessary high spectral resolution, but its limited sensitivity typically requires millimetre-scale samples, precluding applications that involve smaller samples, such as picolitre-volume chemical analysis or correlated optical and NMR microscopy. Here we demonstrate a measurement technique that uses a solid-state spin sensor (a magnetometer) consisting of an ensemble of nitrogen–vacancy centres in combination with a narrowband synchronized readout protocol7,8,9 to obtain NMR spectral resolution of about one hertz. We use this technique to observe NMR scalar couplings in a micrometre-scale sample volume of approximately ten picolitres. We also use the ensemble of nitrogen–vacancy centres to apply NMR to thermally polarized nuclear spins and resolve chemical-shift spectra from small molecules. Our technique enables analytical NMR spectroscopy at the scale of single cells.en_US
dc.language.isoen_USen_US
dc.publisherSpringer Natureen_US
dash.licenseOAP
dc.subjectMultidisciplinaryen_US
dc.titleHigh-Resolution Magnetic Resonance Spectroscopy Using a Solid-State Spin Sensoren_US
dc.typeJournal Articleen_US
dc.description.versionAccepted Manuscripten_US
dc.relation.journalNatureen_US
dash.depositing.authorLukin, Mikhail
dc.date.available2019-07-22T19:51:38Z
dash.workflow.commentsFAR2017en_US
dash.funder.nameUS Army Research Officeen_US
dash.funder.nameGerman Research Foundationen_US
dash.funder.nameGordon and Betty Moore Foundationen_US
dash.funder.awardBU 3257/1-1en_US
dash.funder.awardW911NF1510548en_US
dc.identifier.doi10.1038/nature25781
dc.source.journalNature
dash.source.volume555;7696
dash.source.page351-354
dash.contributor.affiliatedLee, Junghyun
dash.contributor.affiliatedGlenn, David
dash.contributor.affiliatedWalsworth, Ronald
dash.contributor.affiliatedBucher, Dominik
dash.contributor.affiliatedLukin, Mikhail
dash.contributor.affiliatedPark, Hongkun


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record