Improved Quantum Sensing with a Single Solid-State Spin via Spin-to-Charge Conversion

View/ Open
Author
Published Version
https://doi.org/10.1103/physrevapplied.11.064003Metadata
Show full item recordCitation
Jaskula, J.-C., B. J. Shields, E. Bauch, M. D. Lukin, A. S. Trifonov, and R. L. Walsworth. 2019. Improved Quantum Sensing with a Single Solid-State Spin via Spin-to-Charge Conversion. Physical Review Applied 11: 064003.Abstract
Efficient optical read-out of single, solid-state electronic spins at room temperature is a key challenge for nanoscale quantum sensing. Nitrogen-vacancy color centers in diamond have a fast optical spin-state read-out mechanism, but it provides little information in a single shot, because the spin state is destroyed before many photons can be collected. Recently, a technique based on spin-to-charge conversion (SCC) was demonstrated that circumvents this problem by converting the spin state to a long-lived charge state. Here, we study how the choice of spin read-out technique impacts the performance of a single nitrogen-vacancy center in bulk diamond for quantum-sensing applications. Specifically, we show that the SCC technique results in an order-of-magnitude reduction in spin read-out noise per shot and a factor of 5 increase in ac-magnetometry sensitivity compared with the conventional optical read-out method. Crucially, these improvements are obtained for a low collection efficiency and bulk diamond geometry, which opens up the SCC technique to a wide array of sensing applications. We identify applications where single-shot spin read-out noise, rather than sensitivity, is the limiting factor (e.g., low duty cycle pulsed sequences in biomagnetometry involving long dead times).Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAPCitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:40991018
Collections
- FAS Scholarly Articles [17582]
Contact administrator regarding this item (to report mistakes or request changes)