Show simple item record

dc.contributor.advisorNarayan, Ramesh
dc.contributor.advisorHernquist, Lars
dc.contributor.authorMocz, Philip
dc.date.accessioned2019-08-09T09:11:17Z
dc.date.created2017-05
dc.date.issued2017-04-25
dc.date.submitted2017
dc.identifier.citationMocz, Philip. 2017. Moving Mesh Magnetohydrodynamics: Magnetic Processes in Star Formation and Cosmology. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences.
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:41141653*
dc.description.abstractMagnetohydrodynamic (MHD) processes are ubiquitous in our Universe. From the largest cosmological scales where primordial magnetic fields may fill the cosmic web to scales of the formation of individual stars, the magnetic field affects the observable signatures of these systems and their dynamics. Numerical simulations of MHD processes are vital to gain an understanding of the fundamental physical processes that shape these systems and the physical parameters that describe them. Such simulations can be numerically challenging however, due to the large dynamic range in densities seen in these systems. Furthermore, the divergence-free condition on the magnetic field poses additional numerical challenges for evolving the field at the discretized level. I develop a moving mesh MHD method that overcomes these two primary computational challenges. The moving mesh framework allows the code to automatically and adaptively follow material as it moves and collapses under self-gravity. Furthermore, I formulate the numerical MHD solver as a constraint transport algorithm that maintains Maxwell's law of a divergence-free magnetic field at the level of machine-precision. I present simulation studies of magnetic field growth and amplification on scales of cosmology and star formation. Despite their differences, these two systems share some commonalities as they are both systems collapsing under self-gravity with magneto-turbulent processes present, which are responsible for how the magnetic field ultimately grows. Fundamental physical processes in these systems and their observational signatures are investigated in this dissertation.
dc.description.sponsorshipAstronomy
dc.format.mimetypeapplication/pdf
dc.language.isoen
dash.licenseLAA
dc.subjectmagnetohydrodynamics
dc.subjectstar formation
dc.subjectcosmology
dc.subjectnumerical methods
dc.titleMoving Mesh Magnetohydrodynamics: Magnetic Processes in Star Formation and Cosmology
dc.typeThesis or Dissertation
dash.depositing.authorMocz, Philip
dc.date.available2019-08-09T09:11:17Z
thesis.degree.date2017
thesis.degree.grantorGraduate School of Arts & Sciences
thesis.degree.grantorGraduate School of Arts & Sciences
thesis.degree.levelDoctoral
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy
thesis.degree.nameDoctor of Philosophy
dc.contributor.committeeMemberFinkbeiner, Douglas
dc.contributor.committeeMemberGoodman, Alyssa
dc.contributor.committeeMemberOstriker, Eve
dc.type.materialtext
thesis.degree.departmentAstronomy
thesis.degree.departmentAstronomy
dash.identifier.vireo
dc.identifier.orcid0000-0001-6631-2566
dash.author.emailphilip.mocz@gmail.com


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record