Sulfur-induced embrittlement of nickel: a first-principles study
View/ Open
59731 msmse_20_065007_2012.pdf (1.751Mb)
Access Status
Full text of the requested work is not available in DASH at this time ("restricted access"). For more information on restricted deposits, see our FAQ.Author
Schusteritsch, Georg
Kaxiras, Efthimios
Published Version
https://doi.org/10.1088/0965-0393/20/6/065007Metadata
Show full item recordCitation
Schusteritsch, Georg, and Efthimios Kaxiras. 2012. “Sulfur-Induced Embrittlement of Nickel: A First-Principles Study.” Modelling and Simulation in Materials Science and Engineering 20 (6): 65007. https://doi.org/10.1088/0965-0393/20/6/065007.Abstract
We study the embrittlement of Ni due to the presence of S impurities, considering their effect in the bulk and at grain boundaries (GBs). For bulk Ni, we employ Rice's theory based on generalized-stacking-fault energetics and the unstable stacking energy criterion. We use first-principles density-functional-theory calculations to determine the ductility parameter D = gamma(s)/gamma(us), the ratio of the surface energy gamma(s) to the unstable stacking energy gamma(us), for bulk Ni with substitutional S impurities. Similar arguments based on Rice's theory for the mechanical properties of GBs are invoked. We study the Sigma 5(0 12) GB with interstitial S impurities, in which case D is defined as the ratio of the work of separation W-s and the unstable stacking energy gamma(us), to model the competition between grain decohesion and shear-induced plastic deformation due to grain boundary sliding (GBS). The presence of S impurities is found to increase the value of D by similar to 40% in bulk Ni, but reduces it by over 80% for the GB. These results support earlier suggestions that embrittlement of Ni by S impurities is related to their effect on GBs. We further calculate relevant tensile and shear stresses to study the expected fracture mode and find that intergranular crack propagation accommodated by GBS is inhibited in the system considered here.Citable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41384047
Collections
- FAS Scholarly Articles [17845]
Contact administrator regarding this item (to report mistakes or request changes)