Superconducting and charge–density wave instabilities in ultrasmall-radius carbon nanotubes
View/ Open
Author
Barnett, Ryan
Demler, Eugene
Kaxiras, Efthimios
Published Version
https://doi.org/10.1016/j.ssc.2005.04.049Metadata
Show full item recordCitation
Barnett, Ryan, Eugene Demler, and Efthimios Kaxiras. 2005. “Superconducting and Charge–density Wave Instabilities in Ultrasmall-Radius Carbon Nanotubes.” Solid State Communications 135 (5): 335–39. https://doi.org/10.1016/j.ssc.2005.04.049.Abstract
We perform a detailed analysis of the band structure, phonon dispersion, and electron-phonon coupling of three types of small-radius carbon nanotubes (CNTs): (5,0), (6,0), and (5,5) with diameters 3.9, 4.7, and 6.8 angstrom respectively. The large curvature of the (5,0) CNTs makes them metallic with a large density of states at the Fermi energy. The density of states is also strongly enhanced for the (6,0) CNTs compared to the results obtained from the zone-folding method. For the (5,5) CNTs the electron-phonon interaction is dominated by the in-plane optical phonons, while for the ultrasmall (5,0) and (6,0) CNTs the main coupling is to the out-of-plane optical phonon modes. We calculate electron-phonon interaction strengths for all three types of CNTs and analyze possible instabilities toward superconducting and charge-density wave phases. For the smallest (5,0) nanotube, in the mean-field approximation and neglecting Coulomb interactions, we find that the charge-density wave transition temperature greatly exceeds the superconducting one. When we include a realistic model of the Coulomb interaction we find that the charge-density wave is suppressed to very low temperatures, making superconductivity dominant with the mean-field transition temperature around one K. For the (6,0) nanotube the charge-density wave dominates even with the inclusion of Coulomb interactions and we find the mean-field transition temperature to be around five Kelvin. We find that the larger radius (5,5) nanotube is stable against superconducting and charge-density wave orders at all realistic temperatures.Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41384127
Collections
- FAS Scholarly Articles [17845]
Contact administrator regarding this item (to report mistakes or request changes)