Denervation protects limbs from inflammatory arthritis via an impact on the microvasculature
View/ Open
Author
Stangenberg, Lars
Burzyn, Dalia
Binstadt, Bryce
Weissleder, Ralph
Mahmood, Umar
Benoist, Christophe
Mathis, Diane
Published Version
https://doi.org/10.1073/pnas.1410854111Metadata
Show full item recordCitation
Stangenberg, L., D. Burzyn, B. A. Binstadt, R. Weissleder, U. Mahmood, C. Benoist, and D. Mathis. 2014. “Denervation Protects Limbs from Inflammatory Arthritis via an Impact on the Microvasculature.” Proceedings of the National Academy of Sciences 111 (31): 11419–24. https://doi.org/10.1073/pnas.1410854111.Abstract
Two-way communication between the mammalian nervous and immune systems is increasingly recognized and appreciated. An intriguing example of such crosstalk comes from clinical observations dating from the 1930s: Patients who suffer a stroke and then develop rheumatoid arthritis atypically present with arthritis on only one side, the one not afflicted with paralysis. Here we successfully modeled hemiplegia-induced protection from arthritis using the K/BxN serum-transfer system, focused on the effector phase of inflammatory arthritis. Experiments entailing pharmacological inhibitors, genetically deficient mouse strains, and global transcriptome analyses failed to associate the protective effect with a single nerve quality (i.e., with the sympathetic, parasympathetic, or sensory nerves). Instead, there was clear evidence that denervation had a long-term effect on the limb microvasculature: The rapid and joint-localized vascular leak that typically accompanies and promotes serum-transferred arthritis was compromised in denervated limbs. This defect was reflected in the transcriptome of endothelial cells, the expression of several genes impacting vascular leakage or transendothelial cell transmigration being altered in denervated limbs. These findings highlight a previously unappreciated pathway to dissect and eventually target in inflammatory arthritis.Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41384275
Collections
- HMS Scholarly Articles [18278]
Contact administrator regarding this item (to report mistakes or request changes)