Bioorthogonal chemistry amplifies nanoparticle binding and enhances the sensitivity of cell detection
View/ Open
Author
Haun, Jered B.
Devaraj, Neal K.
Hilderbrand, Scott A.
Lee, Hakho
Weissleder, Ralph
Published Version
https://doi.org/10.1038/nnano.2010.148Metadata
Show full item recordCitation
Haun, Jered B., Neal K. Devaraj, Scott A. Hilderbrand, Hakho Lee, and Ralph Weissleder. 2010. “Bioorthogonal Chemistry Amplifies Nanoparticle Binding and Enhances the Sensitivity of Cell Detection.” Nature Nanotechnology 5 (9): 660–65. https://doi.org/10.1038/nnano.2010.148.Abstract
Nanoparticles have emerged as key materials for biomedical applications because of their unique and tunable physical properties, multivalent targeting capability, and high cargo capacity(1,2). Motivated by these properties and by current clinical needs, numerous diagnostic(3-10) and therapeutic(11-13) nanomaterials have recently emerged. Here we describe a novel nanoparticle targeting platform that uses a rapid, catalyst-free cycloaddition as the coupling mechanism. Antibodies against biomarkers of interest were modified with trans-cyclooctene and used as scaffolds to couple tetrazine-modified nanoparticles onto live cells. We show that the technique is fast, chemoselective, adaptable to metal nanomaterials, and scalable for biomedical use. This method also supports amplification of biomarker signals, making it superior to alternative targeting techniques including avidin/biotin.Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41384366
Collections
- HMS Scholarly Articles [17875]
Contact administrator regarding this item (to report mistakes or request changes)