Show simple item record

dc.contributor.authorKirsch, David G.
dc.contributor.authorGrimm, Jan
dc.contributor.authorGuimaraes, Alexander R.
dc.contributor.authorWojtkiewicz, Gregory R.
dc.contributor.authorPerez, Bradford A.
dc.contributor.authorSantiago, Philip M.
dc.contributor.authorAnthony, Nikolas K.
dc.contributor.authorForbes, Thomas
dc.contributor.authorDoppke, Karen
dc.contributor.authorWeissleder, Ralph
dc.contributor.authorJacks, Tyler
dc.date.accessioned2019-09-21T03:38:06Z
dc.date.issued2010
dc.identifier.citationKirsch, David G., Jan Grimm, Alexander R. Guimaraes, Gregory R. Wojtkiewicz, Bradford A. Perez, Philip M. Santiago, Nikolas K. Anthony, et al. 2010. “Imaging Primary Lung Cancers in Mice to Study Radiation Biology.” International Journal of Radiation Oncology*Biology*Physics 76 (4): 973–77. https://doi.org/10.1016/j.ijrobp.2009.11.038.
dc.identifier.issn0360-3016
dc.identifier.issn1879-355X
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:41384405*
dc.description.abstractPurpose: To image a genetically engineered mouse model of non small-cell lung cancer with micro computed tomography (micro-CT) to measure tumor response to radiation therapy. Methods and Materials: The Cre-loxP system was used to generate primary lung cancers in mice with mutation in K-ras alone or in combination with p53 mutation. Mice were serially imaged by micro-CT, and tumor volumes were determined. A comparison of tumor volume by micro-CT and tumor histology was performed. Tumor response to radiation therapy (15.5 Gy) was assessed with micro-CT. Results: The tumor volume measured with free-breathing micro-CT scans was greater than the volume calculated by histology. Nevertheless, this imaging approach demonstrated that lung cancers with mutant p53 grew more rapidly than lung tumors with wild-type p53 and also showed that radiation therapy increased the doubling time of p53 mutant lung cancers fivefold. Conclusions: Micro-CT is an effective tool to noninvasively measure the growth of primary lung cancers in genetically engineered mice and assess tumor response to radiation therapy. This imaging approach will be useful to study the radiation biology of lung cancer.
dc.language.isoen_US
dc.publisherElsevier
dash.licenseLAA
dc.titleImaging Primary Lung Cancers in Mice to Study Radiation Biology
dc.typeJournal Article
dc.description.versionAccepted Manuscript
dc.relation.journalInternational Journal of Radiation Oncology, Biology, Physics
dash.depositing.authorWeissleder, Ralph::ea07ce19f187d4fab47c56ee97fa5c5a::600
dc.date.available2019-09-21T03:38:06Z
dash.workflow.comments1Science Serial ID 42825
dc.identifier.doi10.1016/j.ijrobp.2009.11.038
dash.source.volume76;4
dash.source.page973


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record