Hydrogen‐triggered Type I X‐Ray Bursts in a Two‐Zone Model
View/ Open
Author
Cooper, Randall L.
Narayan, Ramesh
Published Version
https://doi.org/10.1086/513461Metadata
Show full item recordCitation
Cooper, Randall L., and Ramesh Narayan. 2007. “Hydrogen‐triggered Type I X‐Ray Bursts in a Two‐Zone Model.” The Astrophysical Journal 661 (1): 468–76. https://doi.org/10.1086/513461.Abstract
We use the two-zone model of Cooper & Narayan to study the onset and time evolution of hydrogen-triggered type I X-ray bursts on accreting neutron stars. At the lowest accretion rates, thermally unstable hydrogen burning ignites helium as well and produces a mixed hydrogen and helium burst. For somewhat higher accretion rates, thermally unstable hydrogen burning does not ignite helium and thus triggers only a weak hydrogen flash. For our choice of model parameters, these weak hydrogen flashes occur for 10(-3) less than or similar to M/M-Edd less than or similar to 3x10(-3). The peak luminosities of weak hydrogen flashes are typically much lower than the accretion luminosity. These results are in accord with previous theoretical work. We find that a series of weak hydrogen flashes generates a massive layer of helium that eventually ignites in an energetic pure helium flash. Although previously conjectured, this is the first time such bursting behavior has been actually demonstrated in a theoretical model. For yet higher accretion rates, hydrogen burning is thermally stable and thus steadily generates a layer of helium that ultimately ignites in a pure helium flash. We find that, for a narrow range of accretion rates between the mixed hydrogen and helium burst and weak hydrogen flash regimes, unstable hydrogen burning ignites helium only after a short series of weak hydrogen flashes has generated a sufficiently deep layer of helium. These bursts have fluences that are intermediate between those of normal mixed hydrogen and helium bursts and energetic pure helium flashes.Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41384869
Collections
- FAS Scholarly Articles [17828]
Contact administrator regarding this item (to report mistakes or request changes)