Show simple item record

dc.contributor.authorYuan, Feng
dc.contributor.authorQuataert, Eliot
dc.contributor.authorNarayan, Ramesh
dc.date.accessioned2019-09-22T14:24:48Z
dc.date.issued2003
dc.identifier.citationYuan, Feng, Eliot Quataert, and Ramesh Narayan. 2003. “Nonthermal Electrons in Radiatively Inefficient Accretion Flow Models of Sagittarius A*.” The Astrophysical Journal 598 (1): 301–12. https://doi.org/10.1086/378716.
dc.identifier.issn0004-637X
dc.identifier.issn1538-4357
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:41384950*
dc.description.abstractWe investigate radiatively inefficient accretion flow models for Sgr A*, the supermassive black hole in our Galactic center, in light of new observational constraints. Confirmation of linear polarization in the submillimeter emission argues for accretion rates much less than the canonical Bondi rate. We consider models with low accretion rates and calculate the spectra produced by a hybrid electron population consisting of both thermal and nonthermal particles. The thermal electrons produce the submillimeter emission and can account for its linear polarization properties. As noted in previous work, the observed low-frequency radio spectrum can be explained if a small fraction (approximate to 1.5%) of the electron thermal energy resides in a soft powerlaw tail. In the innermost region of the accretion flow, turbulence and/or magnetic reconnection events may occasionally accelerate a fraction of the electrons into a harder power-law tail. We show that the synchrotron emission from these electrons, or the Compton upscattering of synchrotron photons by the same electrons, may account for the X-ray flares observed by Chandra.
dc.language.isoen_US
dc.publisherAmerican Astronomical Society
dash.licenseLAA
dc.titleNonthermal Electrons in Radiatively Inefficient Accretion Flow Models of Sagittarius A*
dc.typeJournal Article
dc.description.versionAccepted Manuscript
dc.relation.journalThe Astrophysical Journal
dash.depositing.authorNarayan, Ramesh::dc7afe5d74d62c7b451015317ea2ccbe::600
dc.date.available2019-09-22T14:24:48Z
dash.workflow.comments1Science Serial ID 96534
dc.identifier.doi10.1086/378716
dash.source.volume598;1
dash.source.page301


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record