Show simple item record

dc.contributor.authorNarayan, Ramesh
dc.contributor.authorHeyl, Jeremy S.
dc.date.accessioned2019-09-22T14:24:50Z
dc.date.issued2003
dc.identifier.citationNarayan, Ramesh, and Jeremy S. Heyl. 2003. “Thermonuclear Stability of Material Accreting onto a Neutron Star.” The Astrophysical Journal 599 (1): 419–49. https://doi.org/10.1086/379211.
dc.identifier.issn0004-637X
dc.identifier.issn1538-4357
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:41384951*
dc.description.abstractWe present a global linear stability analysis of nuclear fuel accumulating on the surface of an accreting neutron star, and we identify the conditions under which thermonuclear bursts are triggered. The analysis reproduces all the recognized regimes of hydrogen and helium bursts and in addition shows that at high accretion rates, near the limit of stable burning, there is a regime of "delayed mixed bursts" that is distinct from the more usual "prompt mixedbursts." In delayed mixed bursts, a large fraction of the fuel is burned stably before the burst is triggered. Bursts thus have longer recurrence times but at the same time have somewhat smaller fluences. Therefore, the parameter a, which measures the ratio of the energy released via accretion to that generated through nuclear reactions in the burst, is up to an order of magnitude larger than for prompt bursts. This increase in alpha near the threshold of stable burning has been seen in observations. We explore a wide range of mass accretion rates, neutron star radii, and core temperatures and calculate a variety of burst properties. From a preliminary comparison with data, we suggest that bursting neutron stars may have hot cores, with T-core greater than or similar to 10(7.5) K, consistent with interior cooling via the modified Urca or similar low-efficiency process, rather than T-core similar to 10(7) K, as expected for the direct Urca process. There is also an indication that neutron star radii are somewhat small, less than or similar to10 km. Both of these conclusions need to be confirmed by comparing more careful calculations with better data.
dc.language.isoen_US
dc.publisherAmerican Astronomical Society
dash.licenseLAA
dc.titleThermonuclear Stability of Material Accreting onto a Neutron Star
dc.typeJournal Article
dc.description.versionAccepted Manuscript
dc.relation.journalThe Astrophysical Journal
dash.depositing.authorNarayan, Ramesh::dc7afe5d74d62c7b451015317ea2ccbe::600
dc.date.available2019-09-22T14:24:50Z
dash.workflow.comments1Science Serial ID 96609
dc.identifier.doi10.1086/379211
dash.source.volume599;1
dash.source.page419-449


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record