Show simple item record

dc.contributor.authorRobel, Alexander A.
dc.contributor.authorTziperman, Eli
dc.date.accessioned2019-09-22T15:33:32Z
dc.date.issued2016
dc.identifier.citationRobel, Alexander A., and Eli Tziperman. 2016. “The Role of Ice Stream Dynamics in Deglaciation.” Journal of Geophysical Research: Earth Surface 121 (8): 1540–54. https://doi.org/10.1002/2016jf003937.
dc.identifier.issn2169-9003
dc.identifier.issn2169-9011
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:41384978*
dc.description.abstractSince the mid-Pleistocene transition, deglaciation has occurred only after ice sheets have grown large while experiencing several precession and obliquity cycles, indicating that large ice sheets are more sensitive to Milankovitch forcing than small ice sheets are. Observations and model simulations suggest that the development of ice streams in the Laurentide Ice Sheet played an as yet unknown role in deglaciations. In this study, we propose a mechanism by which ice streams may enhance deglaciation and render large ice sheets more sensitive to Milankovitch forcing. We use an idealized configuration of the Parallel Ice Sheet Model that permits the formation of ice streams. When the ice sheet is large and ice streams are sufficiently developed, an upward shift in equilibrium line altitude, commensurate with Milankovitch forcing, results in rapid deglaciation, while the same shift applied to an ice sheet without fully formed ice streams results in continued ice sheet growth or slower deglaciation. Rapid deglaciation in ice sheets with significant streaming behavior is caused by ice stream acceleration and the attendant enhancement of calving and surface melting at low elevations. Ice stream acceleration is ultimately the result of steepening of the ice surface and increased driving stresses in ice stream onset zones, which come about due to the dependence of surface mass balance on elevation. These ice sheet simulations match the broad features of geomorphological observations and add ice stream dynamics that are missing from previous model studies of deglaciation.
dc.language.isoen_US
dc.publisherJohn Wiley and Sons Inc.
dash.licenseLAA
dc.titleThe role of ice stream dynamics in deglaciation
dc.typeJournal Article
dc.description.versionVersion of Record
dc.relation.journalJournal of Geophysical Research - Earth Surface
dash.depositing.authorTziperman, Eli::12292aa29638efa321fd11538b8c7466::600
dc.date.available2019-09-22T15:33:32Z
dash.workflow.comments1Science Serial ID 47263
dc.identifier.doi10.1002/2016JF003937
dash.source.volume121;8
dash.source.page1540-1554


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record