Show simple item record

dc.contributor.authorArnold, Nathan P.
dc.contributor.authorTziperman, Eli
dc.contributor.authorFarrell, Brian
dc.date.accessioned2019-09-22T15:33:34Z
dc.date.issued2012
dc.identifier.citationArnold, Nathan P., Eli Tziperman, and Brian Farrell. 2012. “Abrupt Transition to Strong Superrotation Driven by Equatorial Wave Resonance in an Idealized GCM.” Journal of the Atmospheric Sciences 69 (2): 626–40. https://doi.org/10.1175/jas-d-11-0136.1.
dc.identifier.issn0022-4928
dc.identifier.issn0099-7005
dc.identifier.issn1520-0469
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:41384981*
dc.description.abstractPersistent superrotation is seen in the atmospheres of other terrestrial bodies (Venus, Titan) but not in that of present Earth, which is distinguished by equatorial easterlies. Nevertheless, superrotation has appeared in numerical simulations of Earth's atmosphere, from two-layer models to multilevel comprehensive GCMs. Simulations of warm climates that generate enhanced tropical convective variability seem particularly prone to superrotation, which has led to hypotheses that the warmer atmospheres of the early Pliocene and Eocene may have been superrotating, and that the phenomenon may be relevant to future climate projections.This paper considers a positive feedback leading to superrotation based on an equatorial wave resonance that occurs in a westerly background flow. The authors present simulations with an idealized multilevel GCM forced with a zonally varying equatorial heating, which show abrupt transitions to strongly superrotating states. Linear shallow water theory is used to show that these transitions occur as the superrotating jet velocity approaches the phase speed of free equatorial Rossby wave modes, leading to a resonant amplification of the response to eddy heating and its associated equatorward momentum flux. The resonance and transition are most prominent in simulations where the meridional temperature gradient has been reduced, and hysteresis behavior is seen when the gradient is eliminated completely. No evidence is found in these simulations for the midlatitude wave feedback believed to drive abrupt transitions in two-layer models, and there is only a minor role for the axisymmetric feedback based on vertical advection by the Hadley circulation.
dc.language.isoen_US
dc.publisherAmerican Meteorological Society
dash.licenseLAA
dc.titleAbrupt Transition to Strong Superrotation Driven by Equatorial Wave Resonance in an Idealized GCM
dc.typeJournal Article
dc.description.versionVersion of Record
dc.relation.journalJournal of the Atmospheric Sciences
dash.depositing.authorTziperman, Eli::12292aa29638efa321fd11538b8c7466::600
dc.date.available2019-09-22T15:33:34Z
dash.workflow.comments1Science Serial ID 56950
dc.identifier.doi10.1175/JAS-D-11-0136.1
dash.source.volume69;2
dash.source.page626-640


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record