Show simple item record

dc.contributor.authorOoguri, Hirosi
dc.contributor.authorVafa, Cumrun
dc.contributor.authorVerlinde, Erik
dc.date.accessioned2019-09-22T18:35:22Z
dc.date.issued2005
dc.identifier.citationOoguri, Hirosi, Cumrun Vafa, and Erik Verlinde. 2005. “Hartle–Hawking Wave-Function for Flux Compactifications: The Entropic Principle.” Letters in Mathematical Physics 74 (3): 311–42. https://doi.org/10.1007/s11005-005-0022-x.
dc.identifier.issn0377-9017
dc.identifier.issn1573-0530
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:41385042*
dc.description.abstractWe argue that the topological string partition function, which has been known to correspond to a wave-function, can be interpreted as an exact "wave-function of the universe" in the mini-superspace sector of physical superstring theory. This realizes the idea of Hartle and Hawking in the context of string theory, including all loop quantum corrections. The mini-superspace approximation is justified as an exact description of BPS quantities. Moreover this proposal leads to a conceptual explanation of the recent observation that the black hole entropy is the square of the topological string wave-function. This wave-function can be interpreted in the context of flux compactification of all spatial dimensions as providing a physical probability distribution on the moduli space of string compactification. Euclidean time is realized holographically in this setup.
dc.language.isoen_US
dc.publisherSpringer (part of Springer Nature)
dash.licenseLAA
dc.titleHartle–Hawking Wave-Function for Flux Compactifications: the Entropic Principle
dc.typeJournal Article
dc.description.versionAccepted Manuscript
dc.relation.journalLetters in Mathematical Physics
dash.depositing.authorVafa, C.::4e237a95963132b39101a21b3da5ddb2::600
dc.date.available2019-09-22T18:35:22Z
dash.workflow.comments1Science Serial ID 58363
dc.identifier.doi10.1007/s11005-005-0022-x
dash.source.volume74;3
dash.source.page311-342


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record