Topological strings, D-model, and knot contact homology
View/ Open
Author
Aganagic, Mina
Ekholm, Tobias
Ng, Lenhard
Vafa, Cumrun
Published Version
https://doi.org/10.4310/ATMP.2014.v18.n4.a3Metadata
Show full item recordCitation
Vafa, Cumrun, Mina Aganagic, Tobias Ekholm, and Lenhard Ng. 2014. “Topological Strings, D-Model, and Knot Contact Homology.” Advances in Theoretical and Mathematical Physics 18 (4): 827–956. https://doi.org/10.4310/atmp.2014.v18.n4.a3.Abstract
We study the connection between topological strings and contact homology recently proposed in the context of knot invariants. In particular, we establish the proposed relation between the Gromov-Witten disk amplitudes of a Lagrangian associated to a knot and augmentations of its contact homology algebra. This also implies the equality between the Q-deformed A-polynomial and the augmentation polynomial of knot contact homology (in the irreducible case). We also generalize this relation to the case of links and to higher rank representations for knots. The generalization involves a study of the quantum moduli space of special Lagrangian branes with higher Betti numbers probing the Calabi-Yau. This leads to an extension of SYZ, and a new notion of mirror symmetry, involving higher dimensional mirrors. The mirror theory is a topological string, related to D-modules, which we call the "D-model". In the present setting, the mirror manifold is the augmentation variety of the link. Connecting further to contact geometry, we study intersection properties of branches of the augmentation variety guided by the relation to D-modules. This study leads us to propose concrete geometric constructions of Lagrangian fillings for links. We also relate the augmentation variety with the large N limit of the colored HOMFLY, which we conjecture to be related to a Q-deformation of the extension of A-polynomials associated with the link complement.Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAPCitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41385048
Collections
- FAS Scholarly Articles [17845]
Contact administrator regarding this item (to report mistakes or request changes)