Show simple item record

dc.contributor.authorLoeb, Abraham
dc.date.accessioned2019-09-24T12:04:01Z
dc.date.issued1998
dc.identifier.citationLoeb, Abraham. 1998. “Measuring the Virial Temperature of Galactic Halos through Electron Scatteringof Quasar Emission Lines.” The Astrophysical Journal 508 (2): L115–18. https://doi.org/10.1086/311744.
dc.identifier.issn0004-637X
dc.identifier.issn1538-4357
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:41393222*
dc.description.abstractSemianalytic models of galaxy formation postulate the existence of virialized gaseous halos around galaxies at high redshifts. A small fraction of the light emitted by any high-redshift quasar is therefore expected to scatter off the free electrons in the halo of its host galaxy. The broadening of the scattered emission lines of the quasar can be used to measure the temperature of these electrons. For gas in virial equilibrium, the velocity width of the scattered line profile is larger by a factor of similar to(m(p)/m(e))(1/2) = 43 than the velocity dispersion of the host galaxy and reaches greater than or similar to 10,000 km s(-1) for the massive galaxies and groups in which bright quasars reside. In these systems, the scattered width exceeds the intrinsic width of the quasar lines and hence can be used to measure the virial temperature of the quasar host. The high degree of polarization of the scattered radiation can help filter out the extended scattered light from the central emission by the quasar and its host galaxy. The signal-to-noise ratio of the spectral broadening can be enhanced by matching the full spectrum of the scattered radiation to a template of the unscattered quasar spectrum. Although the central fuzz around low-redshift quasars is dominated by starlight, the fuzz around high-redshift quasars might be dominated by scattering before galaxies have converted most of their gas reservoirs into stars.
dc.language.isoen_US
dc.publisherAmerican Astronomical Society
dash.licenseLAA
dc.titleMeasuring the Virial Temperature of Galactic Halos through Electron Scatteringof Quasar Emission Lines
dc.typeJournal Article
dc.description.versionVersion of Record
dc.relation.journalThe Astrophysical Journal
dash.depositing.authorLoeb, Abraham::9975df1f269ab49c1ad5a328a1ec1476::600
dc.date.available2019-09-24T12:04:01Z
dash.workflow.comments1Science Serial ID 95394
dc.identifier.doi10.1086/311744
dash.source.volume508;2
dash.source.pageL115-L118


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record