Show simple item record

dc.contributor.authorMandel, Kaisey S.
dc.contributor.authorWood-Vasey, W. Michael
dc.contributor.authorFriedman, Andrew S.
dc.contributor.authorKirshner, Robert P.
dc.date.accessioned2019-09-25T14:11:59Z
dc.date.issued2009
dc.identifier.citationMandel, Kaisey S., W. Michael Wood-Vasey, Andrew S. Friedman, and Robert P. Kirshner. 2009. “TYPE Ia SUPERNOVA LIGHT-CURVE INFERENCE: HIERARCHICAL BAYESIAN ANALYSIS IN THE NEAR-INFRARED.” The Astrophysical Journal 704 (1): 629–51. https://doi.org/10.1088/0004-637x/704/1/629.
dc.identifier.issn0004-637X
dc.identifier.issn1538-4357
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:41399750*
dc.description.abstractWe present a comprehensive statistical analysis of the properties of Type Ia supernova (SN Ia) light curves in the near-infrared using recent data from Peters Automated InfraRed Imaging TELescope and the literature. We construct a hierarchical Bayesian framework, incorporating several uncertainties including photometric error, peculiar velocities, dust extinction, and intrinsic variations, for principled and coherent statistical inference. SN Ia light-curve inferences are drawn from the global posterior probability of parameters describing both individual supernovae and the population conditioned on the entire SN Ia NIR data set. The logical structure of the hierarchical model is represented by a directed acyclic graph. Fully Bayesian analysis of the model and data is enabled by an efficient Markov Chain Monte Carlo algorithm exploiting the conditional probabilistic structure using Gibbs sampling. We apply this framework to the JHKs SN Ia light-curve data. A new light-curve model captures the observed J-band light-curve shape variations. The marginal intrinsic variances in peak absolute magnitudes are sigma(M-J) = 0.17+/-0.03, sigma(M-H) = 0.11+/-0.03, and sigma(M-Ks) = 0.19+/-0.04. We describe the first quantitative evidence for correlations between the NIR absolute magnitudes and J-band light-curve shapes, and demonstrate their utility for distance estimation. The average residual in the Hubble diagram for the training set SNe at cz > 2000 km s(-1) is 0.10 mag. The new application of bootstrap cross-validation to SN Ia light-curve inference tests the sensitivity of the statistical model fit to the finite sample and estimates the prediction error at 0.15 mag. These results demonstrate that SN Ia NIR light curves are as effective as corrected optical light curves, and, because they are less vulnerable to dust absorption, they have great potential as precise and accurate cosmological distance indicators.
dc.language.isoen_US
dc.publisherAmerican Astronomical Society
dash.licenseLAA
dc.titleType Ia Supernova Light-curve Inference: Hierarchical Bayesian Analysis in the Near-infrared
dc.typeJournal Article
dc.description.versionVersion of Record
dc.relation.journalThe Astrophysical Journal
dash.depositing.authorKirshner, Robert P.::0f07c3b6230f5e5a42326bcba12a1795::600
dc.date.available2019-09-25T14:11:59Z
dash.workflow.comments1Science Serial ID 98366
dc.identifier.doi10.1088/0004-637X/704/1/629
dash.source.volume704;1
dash.source.page629-651


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record