Evidence from Quasi-periodic Oscillations for a Millisecond Pulsar in the Low-Mass X-Ray Binary 4U 0614+091
Author
Ford, E.
Kaaret, P.
Tavani, M.
Barret, D.
Bloser, P.
Grindlay, J.
Harmon, B. A.
Paciesas, W. S.
Zhang, S. N.
Published Version
https://doi.org/10.1086/310483Metadata
Show full item recordCitation
Ford, E., P. Kaaret, M. Tavani, D. Barret, P. Bloser, J. Grindlay, B. A. Harmon, W. S. Paciesas, and S. N. Zhang. 1997. “Evidence from Quasi-Periodic Oscillations for a Millisecond Pulsar in the Low-Mass X-Ray Binary 4U 0614+091.” The Astrophysical Journal 475 (2): L123–26. https://doi.org/10.1086/310483.Abstract
We have detected quasi-periodic oscillations (QPOs) near 1 kHz from the low-mass X-ray binary 4U 0614+091 in observations with the Rossi X-Ray Timing Explorer. The observations span several months and sample the source over a large range of X-ray luminosity. In every interval, QPOs are present above 400 Hz with fractional rms amplitudes from 3% to 12% over the full Proportional Counter Array energy band, At high count rates, two high-frequency QPOs are detected simultaneously. The difference in their frequency centroids is consistent with a constant value of 323 +/- 4 Hz in all observations. During one interval, a third signal is detected at 328 +/- 2 Hz. This suggests that the system has a stable ''clock'' that is most likely the neutron star with spin period 3.1 ms. Thus, our observations of 4U 0614+091, and those of 4U 1728-34 and KS 1731-260, provide the first evidence for millisecond pulsars within low-mass X-ray binary systems and reveal the ''missing-link'' between millisecond radiopulsars and the late stages of binary evolution in low-mass X-ray binaries. The constant difference in the high-frequency QPOs suggests a beat-frequency interpretation. In this model, the high-frequency QPO is associated with the Keplerian frequency of the inner accretion disk, and the lower frequency QPO is a ''beat'' between the differential rotation frequency of the inner disk and the spinning neutron star. Assuming the high-frequency QPO is a Keplerian orbital frequency for the accretion disk, we find a maximum mass of 1.9 M. and a maximum radius of 17 km for the neutron star.Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41399757
Collections
- FAS Scholarly Articles [17845]
Contact administrator regarding this item (to report mistakes or request changes)