Show simple item record

dc.contributor.authorRiess, Adam G.
dc.contributor.authorStrolger, Louis-Gregory
dc.contributor.authorTonry, John
dc.contributor.authorCasertano, Stefano
dc.contributor.authorFerguson, Henry C.
dc.contributor.authorMobasher, Bahram
dc.contributor.authorChallis, Peter
dc.contributor.authorFilippenko, Alexei V.
dc.contributor.authorJha, Saurabh
dc.contributor.authorLi, Weidong
dc.contributor.authorChornock, Ryan
dc.contributor.authorKirshner, Robert P.
dc.contributor.authorLeibundgut, Bruno
dc.contributor.authorDickinson, Mark
dc.contributor.authorLivio, Mario
dc.contributor.authorGiavalisco, Mauro
dc.contributor.authorSteidel, Charles C.
dc.contributor.authorBenitez, Txitxo
dc.contributor.authorTsvetanov, Zlatan
dc.date.accessioned2019-09-25T14:13:43Z
dc.date.issued2004
dc.identifier.citationRiess, Adam G., Louis‐Gregory Strolger, John Tonry, Stefano Casertano, Henry C. Ferguson, Bahram Mobasher, Peter Challis, et al. 2004. “Type Ia Supernova Discoveries Atz> 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution.” The Astrophysical Journal 607 (2): 665–87. https://doi.org/10.1086/383612.
dc.identifier.issn0004-637X
dc.identifier.issn1538-4357
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:41399911*
dc.description.abstractWe have discovered 16 Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to provide the first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration. These objects, discovered during the course of the GOODS ACS Treasury program, include 6 of the 7 highest redshift SNe Ia known, all at z > 1.25, and populate the Hubble diagram in unexplored territory. The luminosity distances to these objects and to 170 previously reported SNe Ia have been determined using empirical relations between light-curve shape and luminosity. A purely kinematic interpretation of the SN Ia sample provides evidence at the greater than 99% confidence level for a transition from deceleration to acceleration or, similarly, strong evidence for a cosmic jerk. Using a simple model of the expansion history, the transition between the two epochs is constrained to be at z = 0.46 +/- 0.13. The data are consistent with the cosmic concordance model of Omega(M) approximate to 0.3; Omega(Lambda) approximate to 0.7 (chi(dof)(2) = 1.06) and are inconsistent with a simple model of evolution or dust as an alternative to dark energy. For a flat universe with a cosmological constant, we measure Omega(M) = 0.29 +/- 0.05 (equivalently, Omega(Lambda) = 0.71). When combined with external flat-universe constraints, including the cosmic microwave background and large-scale structure, we find w = -1.02+/-(0.13)(0.19) (and w < -0.76 at the 95% confidence level) for an assumed static equation of state of dark energy, P = w rho c(2). Joint constraints on both the recent equation of state of dark energy, w(0), and its time evolution, dw/dz, are a factor of similar to 8 more precise than the first estimates and twice as precise as those without the SNe Ia discovered with HST. Our constraints are consistent with the static nature of and value of w expected for a cosmological constant (i.e., w(0) = -1.0, dw/dz = 0) and are inconsistent with very rapid evolution of dark energy. We address consequences of evolving dark energy for the fate of the universe.
dc.language.isoen_US
dc.publisherAmerican Astronomical Society
dash.licenseLAA
dc.titleType Ia Supernova Discoveries atz> 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution
dc.typeJournal Article
dc.description.versionVersion of Record
dc.relation.journalThe Astrophysical Journal
dash.depositing.authorKirshner, Robert P.::0f07c3b6230f5e5a42326bcba12a1795::600
dc.date.available2019-09-25T14:13:43Z
dash.workflow.comments1Science Serial ID 96869
dc.identifier.doi10.1086/383612
dash.source.volume607;2
dash.source.page665-687


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record