Show simple item record

dc.contributor.authorChan, N.-H.
dc.contributor.authorMitrovica, Jerry
dc.contributor.authorMatsuyama, I.
dc.contributor.authorCreveling, J. R.
dc.contributor.authorStanley, S.
dc.date.accessioned2019-09-25T17:53:43Z
dc.date.issued2011
dc.identifier.citationChan, N.-H., J.X. Mitrovica, I. Matsuyama, J.R. Creveling, and S. Stanley. 2011. “The Rotational Stability of a Convecting Earth: Assessing Inferences of Rapid TPW in the Late Cretaceous.” Geophysical Journal International 187 (3): 1319–33. https://doi.org/10.1111/j.1365-246x.2011.05245.x.
dc.identifier.issn0956-540X
dc.identifier.issn1365-246X
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:41401408*
dc.description.abstractWe outline a linearized rotational stability theory for predicting the time dependence of true polar wander (TPW) on a Maxwell viscoelastic body in response to mantle convective loading. The new theory is based on recent advances in ice age rotation theory. A comparison between predictions based on the new theory and analytic expressions for equilibrium (infinite-time) TPW on planetary models with elastic lithospheres demonstrates that the linearized theory can, in the case of loading at mid-latitudes, predict TPW of over 20 degrees to better than 5 per cent accuracy. We present predictions of TPW for loading with periodic and net ramp-up time histories. Moreover, we compare the time dependence of TPW under assumptions consistent with the canonical equilibrium stability theory adopted in most previous analyses of convection-induced TPW, and a stability theory that includes two effects that have not been considered in previous geophysical analyses: (1) the so-called 'remnant rotational bulge' associated with the imperfect reorientation of the rotational bulge due to the presence of an elastic lithosphere; and (2) a stable (over the timescale of the forcing) excess ellipticity. As a first application of the new theory, we consider recent inferences of rapid (order 1 Myr) TPW motion of amplitude 10 degrees-20 degrees during the Late Cretaceous. We conclude that excursions of this amplitude and timescale are physically implausible.
dc.language.isoen_US
dc.publisherOxford University Press
dash.licenseLAA
dc.titleThe rotational stability of a convecting earth: assessing inferences of rapid TPW in the late cretaceous
dc.typeJournal Article
dc.description.versionVersion of Record
dc.relation.journalGeophysical Journal International
dash.depositing.authorMitrovica, Jerry
dc.date.available2019-09-25T17:53:43Z
dash.workflow.comments1Science Serial ID 35967
dc.identifier.doi10.1111/j.1365-246X.2011.05245.x
dash.source.volume187;3
dash.source.page1319-1333
dash.contributor.affiliatedMitrovica, Jerry


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record