Show simple item record

dc.contributor.authorWyithe, J. Stuart B.
dc.contributor.authorLoeb, Abraham
dc.date.accessioned2019-09-26T15:01:06Z
dc.date.issued2012
dc.identifier.citationWyithe, J. Stuart B., and Abraham Loeb. 2012. “Photon Trapping Enables Super-Eddington Growth of Black Hole Seeds in Galaxies at High Redshift.” Monthly Notices of the Royal Astronomical Society 425 (4): 2892–2902. https://doi.org/10.1111/j.1365-2966.2012.21127.x.
dc.identifier.issn0035-8711
dc.identifier.issn1365-2966
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:41412160*
dc.description.abstractWe identify a physical mechanism that would have resulted in rapid, obscured growth of seed supermassive black holes in galaxies at z greater than or similar to 6. Specifically, we find that the density at the centre of typical high-redshift galaxies was at a level where the Bondi accretion rate implies a diffusion speed of photons that was slower than the gravitational infall velocity, resulting in photons being trapped within the accretion flow and advected into the black hole. We show that there is a range of black hole masses (M-bh similar to 10(3-5) M-circle dot) where the accretion flow traps radiation, corresponding to black holes that were massive enough to generate a photon trapping accretion flow, but small enough that their Bondi radii did not exceed the isothermal scale height of self-gravitating gas. Under these conditions we find that the accretion reaches levels far in excess of the Eddington rate. A prediction of this scenario is that X-ray number counts of active galactic nuclei at z greater than or similar to 6 would exhibit a cutoff at the low luminosities corresponding to black hole masses below similar to 10(5) M-circle dot. The super-Eddington growth of similar to 10(5) M-circle dot seed black holes at high redshift may have provided a natural acceleration towards the growth of supermassive black holes at z similar to 6-7, less than a billion years after the big bang.
dc.language.isoen_US
dc.publisherOxford University Press
dash.licenseLAA
dc.titlePhoton trapping enables super-Eddington growth of black hole seeds in galaxies at high redshift
dc.typeJournal Article
dc.description.versionVersion of Record
dc.relation.journalMonthly Notices of the Royal Astronomical Society
dash.depositing.authorLoeb, Abraham::e022a3952362350ac8a0138f128a8be7::600
dc.date.available2019-09-26T15:01:06Z
dash.workflow.comments1Science Serial ID 66670
dc.identifier.doi10.1111/j.1365-2966.2012.21127.x
dash.source.volume425;4
dash.source.page2892-2902


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record