Electronic states near a quantum fluctuating point vortex in a d -wave superconductor: Dirac fermion theory
View/ Open
Author
Nikolić, Predrag
Sachdev, Subir
Bartosch, Lorenz
Published Version
https://doi.org/10.1103/PhysRevB.74.144516Metadata
Show full item recordCitation
Nikolić, Predrag, Subir Sachdev, and Lorenz Bartosch. 2006. “Electronic States near a Quantum Fluctuating Point Vortex in Ad-Wave Superconductor: Dirac Fermion Theory.” Physical Review B 74 (14). https://doi.org/10.1103/physrevb.74.144516.Abstract
We introduce a simple model of the low-energy electronic states in the vicinity of a vortex undergoing quantum zero-point motion in a d-wave superconductor. The vortex is treated as a point flux tube, carrying pi flux of an auxiliary U(1) gauge field, which executes simple harmonic motion in a pinning potential. The nodal Bogoliubov quasiparticles are represented by Dirac fermions with unit U(1) gauge charge. The energy dependence of the local density of electronic states (LDOS) at the vortex center has no zero bias peak; instead, small satellite features appear, driven by transitions between different vortex eigenmodes. These results are qualitatively consistent with scanning tunneling microscopy measurements of the subgap LDOS in cuprate superconductors. Furthermore, as argued in L. Balents , Phys. Rev. B 71, 144508 (2005), the zero-point vortex motion also leads naturally to the observed periodic modulations in the spatial dependence of the subgap LDOS.Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41417237
Collections
- FAS Scholarly Articles [18145]
Contact administrator regarding this item (to report mistakes or request changes)