Microwave Dielectric Heating of Drops in Microfluidic Devices

DSpace/Manakin Repository

Microwave Dielectric Heating of Drops in Microfluidic Devices

Citable link to this page


Title: Microwave Dielectric Heating of Drops in Microfluidic Devices
Author: Weitz, David; Sandberg, Lori; Brown, Keith A.; Humphry, Katherine J.; Issadore, David; Westervelt, Robert M.

Note: Order does not necessarily reflect citation order of authors.

Citation: Issadore, David, Katherine J. Humphrey, Keith A. Brown, Lori Sandberg, David Weitz, and Robert M. Westervelt. 2009. Microwave dielectric heating of drops in microfluidic devices. Lab on a Chip 9(12): 1701-1706.
Full Text & Related Files:
Abstract: We present a technique to locally and rapidly heat water drops in microfluidic devices with microwave dielectric heating. Water absorbs microwave power more efficiently than polymers, glass, and oils due to its permanent molecular dipole moment that has large dielectric loss at GHz frequencies. The relevant heat capacity of the system is a single thermally isolated picolitre-scale drop of water, enabling very fast thermal cycling. We demonstrate microwave dielectric heating in a microfluidic device that integrates a flow-focusing drop maker, drop splitters, and metal electrodes to locally deliver microwave power from an inexpensive, commercially available 3.0 GHz source and amplifier. The temperature change of the drops is measured by observing the temperature dependent fluorescence intensity of cadmium selenide nanocrystals suspended in the water drops. We demonstrate characteristic heating times as short as 15 ms to steady-state temperature changes as large as 30 °C above the base temperature of the microfluidic device. Many common biological and chemical applications require rapid and local control of temperature and can benefit from this new technique.
Published Version: doi:10.1039/b822357b
Terms of Use: This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:4142229
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search