Transforming the Dynamic Response of Robotic Structures and Systems Through Laminar Jamming
View/ Open
18049190.pdf (1.203Mb)
Access Status
Full text of the requested work is not available in DASH at this time ("restricted access"). For more information on restricted deposits, see our FAQ.Published Version
https://doi.org/10.1109/lra.2017.2779802Metadata
Show full item recordCitation
Narang, Yashraj S., Alperen Degirmenci , Joost J. Vlassak, and Robert D. Howe. 2018. Transforming the Dynamic Response of Robotic Structures and Systems Through Laminar Jamming. IEEE Robotics and Automation Letters 3, no. 2 (April): 688-695.Abstract
Researchers have developed variable-impedance mechanisms to control the dynamic response of robotic systems and improve their adaptivity, robustness, and efficiency. However, these mechanisms have limitations in size, cost, and convenience, particularly for variable damping. We demonstrate that laminarjamming structures can transform the dynamic response of robotic structures and systems while overcoming these limitations. In laminar jamming, an external pressure gradient is applied to a laminate of compliant material, changing its stiffness and damping. In this latter, we combine analysis, simulation, and characterization to formulate a lumped-parameter model that captures the nonlinear mechanical behavior of jamming structures and can be used to rapidly simulate their dynamic response. We illustrate that by adjusting the vacuum pressure, the fundamental features of the dynamic response (i.e., frequency, amplitude, decay
rate, and steady-state value) can be tuned on command. Finally, we demonstrate that jamming structures can be integrated into soft structures and traditional rigid robots to considerably alter their response to impacts. With the models and demonstrations provided here, researchers may move further toward building versatile and transformative robots. Index Terms: Soft material robotics, compliant joint/mechanism, dynamics, compliance and impedance control, aerial systems: mechanics and control.
Citable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41436147
Collections
- FAS Scholarly Articles [18176]
Contact administrator regarding this item (to report mistakes or request changes)