Quantum Butterfly Effect in Weakly Interacting Diffusive Metals
View/ Open
Published Version
https://doi.org/10.1103/physrevx.7.031047Metadata
Show full item recordCitation
Patel, Aavishkar A., Debanjan Chowdhury, Subir Sachdev, and Brian Swingle. 2017. Quantum Butterfly Effect in Weakly Interacting Diffusive Metals. Physical Review X 7: 031047.Abstract
We study scrambling, an avatar of chaos, in a weakly interacting metal in the presence of random potential disorder. It is well known that charge and heat spread via diffusion in such an interacting disordered metal. In contrast, we show within perturbation theory that chaos spreads in a ballistic fashion. The squared anticommutator of the electron-field operators inherits a light-cone-like growth, arising from an interplay of a growth (Lyapunov) exponent that scales as the inelastic electron scattering rate and a diffusive piece due to the presence of disorder. In two spatial dimensions, the Lyapunov exponent is universally related at weak coupling to the sheet resistivity. We are able to define an effective temperature-dependent butterfly velocity, a speed limit for the propagation of quantum information that is much slower than microscopic velocities such as the Fermi velocity and that is qualitatively similar to that of a quantum critical system with a dynamical critical exponent z>1.Other Sources
https://arxiv.org/abs/1703.07353Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAPCitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41436148
Collections
- FAS Scholarly Articles [18176]
Contact administrator regarding this item (to report mistakes or request changes)