Show simple item record

dc.contributor.authorCox, Casandra R.
dc.contributor.authorLee, Jungwoo Z.
dc.contributor.authorNocera, Daniel G.
dc.contributor.authorBuonassisi, Tonio
dc.date.accessioned2019-10-03T14:38:07Z
dc.date.issued2014
dc.identifier.citationCox, Casandra R., Jungwoo Z. Lee, Daniel G. Nocera, and Tonio Buonassisi. 2014. “Ten-Percent Solar-to-Fuel Conversion with Nonprecious Materials.” Proceedings of the National Academy of Sciences 111 (39): 14057–61. https://doi.org/10.1073/pnas.1414290111.
dc.identifier.issn0027-8424
dc.identifier.issn0744-2831
dc.identifier.issn1091-6490
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:41461178*
dc.description.abstractDirect solar-to-fuels conversion can be achieved by coupling a photovoltaic device with water-splitting catalysts. We demonstrate that a solar-to-fuels efficiency (SFE) > 10% can be achieved with nonprecious, low-cost, and commercially ready materials. We present a systems design of a modular photovoltaic (PV)-electrochemical device comprising a crystalline silicon PV minimodule and low-cost hydrogen-evolution reaction and oxygen-evolution reaction catalysts, without power electronics. This approach allows for facile optimization en route to addressing lower-cost devices relying on crystalline silicon at high SFEs for direct solar-to-fuels conversion.
dc.language.isoen_US
dc.publisherNational Academy of Sciences
dash.licenseLAA
dc.titleTen-percent solar-to-fuel conversion with nonprecious materials
dc.typeJournal Article
dc.description.versionVersion of Record
dc.relation.journalProceedings of the National Academy of Sciences of the United States of America
dash.depositing.authorNocera, Daniel::f22086f92cb25b2ada0b53a8b15fc59b::600
dc.date.available2019-10-03T14:38:07Z
dash.workflow.comments1Science Serial ID 91233
dc.identifier.doi10.1073/pnas.1414290111
dash.source.volume111;39
dash.source.page14057


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record