High-efficiency degenerate four-wave mixing in triply resonant nanobeam cavities
View/ Open
Author
Lin, Zin
Alcorn, Thomas
Loncar, Marko
Johnson, Steven G.
Rodriguez, Alejandro W.
Published Version
https://doi.org/10.1103/PhysRevA.89.053839Metadata
Show full item recordCitation
Lin, Zin, Thomas Alcorn, Marko Loncar, Steven G. Johnson, and Alejandro W. Rodriguez. 2014. “High-Efficiency Degenerate Four-Wave Mixing in Triply Resonant Nanobeam Cavities.” Physical Review A 89 (5). https://doi.org/10.1103/physreva.89.053839.Abstract
Using a combination of temporal coupled-mode theory and nonlinear finite-difference time-domain (FDTD) simulations, we study the nonlinear dynamics of all-resonant four-wave mixing processes and demonstrate the possibility of achieving high-efficiency limit cycles and steady states that lead to approximate to 100% depletion of the incident light at low input (critical) powers. Our analysis extends previous predictions to capture important effects associated with losses, self- and cross-phase modulation, and imperfect frequency matching (detuning) of the cavity frequencies. We find that maximum steady-state conversion is hypersensitive to frequency mismatch, resulting in high-efficiency limit cycles that arise from the presence of a homoclinic bifurcation in the solution phase space, but that a judicious choice of incident frequencies and input powers, in conjuction with self-phase and cross-phase modulation, can restore high-efficiency steady-state conversion even for large frequency mismatch. Assuming operation in the telecom range, we predict close to perfect quantum efficiencies at reasonably low similar to 50 mW input powers in silicon micrometer-scale PhC nanobeam cavities.Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41461268
Collections
- FAS Scholarly Articles [18153]
Contact administrator regarding this item (to report mistakes or request changes)