Show simple item record

dc.contributor.authorSero, Julia E.
dc.contributor.authorThodeti, Charles K.
dc.contributor.authorMammoto, Akiko
dc.contributor.authorBakal, Chris
dc.contributor.authorThomas, Sheila
dc.contributor.authorIngber, Donald E.
dc.contributor.authorParsons, Maddy
dc.date.accessioned2019-10-03T14:39:46Z
dc.date.issued2011
dc.identifier.citationSero, Julia E., Charles K. Thodeti, Akiko Mammoto, Chris Bakal, Sheila Thomas, and Donald E. Ingber. 2011. “Paxillin Mediates Sensing of Physical Cues and Regulates Directional Cell Motility by Controlling Lamellipodia Positioning.” Edited by Maddy Parsons. PLoS ONE 6 (12): e28303. https://doi.org/10.1371/journal.pone.0028303.
dc.identifier.issn1932-6203
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:41461290*
dc.description.abstractPhysical interactions between cells and the extracellular matrix (ECM) guide directional migration by spatially controlling where cells form focal adhesions (FAs), which in turn regulate the extension of motile processes. Here we show that physical control of directional migration requires the FA scaffold protein paxillin. Using single-cell sized ECM islands to constrain cell shape, we found that fibroblasts cultured on square islands preferentially activated Rac and extended lamellipodia from corner, rather than side regions after 30 min stimulation with PDGF, but that cells lacking paxillin failed to restrict Rac activity to corners and formed small lamellipodia along their entire peripheries. This spatial preference was preceded by non-spatially constrained formation of both dorsal and lateral membrane ruffles from 5-10 min. Expression of paxillin N-terminal (paxN) or C-terminal (paxC) truncation mutants produced opposite, but complementary, effects on lamellipodia formation. Surprisingly, pax-/- and paxN cells also formed more circular dorsal ruffles (CDRs) than pax+ cells, while paxC cells formed fewer CDRs and extended larger lamellipodia even in the absence of PDGF. In a two-dimensional (2D) wound assay, pax-/- cells migrated at similar speeds to controls but lost directional persistence. Directional motility was rescued by expressing full-length paxillin or the N-terminus alone, but paxN cells migrated more slowly. In contrast, pax-/- and paxN cells exhibited increased migration in a three-dimensional (3D) invasion assay, with paxN cells invading Matrigel even in the absence of PDGF. These studies indicate that paxillin integrates physical and chemical motility signals by spatially constraining where cells will form motile processes, and thereby regulates directional migration both in 2D and 3D. These findings also suggest that CDRs may correspond to invasive protrusions that drive cell migration through 3D extracellular matrices.
dc.language.isoen_US
dc.publisherPublic Library of Science
dash.licenseLAA
dc.titlePaxillin Mediates Sensing of Physical Cues and Regulates Directional Cell Motility by Controlling Lamellipodia Positioning
dc.typeJournal Article
dc.description.versionVersion of Record
dc.relation.journalPloS One
dash.depositing.authorIngber, Donald Elliot::577cf2edd94eeff15bcf7e5951504981::600
dc.date.available2019-10-03T14:39:46Z
dash.workflow.comments1Science Serial ID 83782
dc.identifier.doi10.1371/journal.pone.0028303
dash.source.volume6;12


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record