Show simple item record

dc.contributor.authorStein, Andrew M.
dc.contributor.authorVader, David A.
dc.contributor.authorWeitz, David A.
dc.contributor.authorSander, Leonard M.
dc.date.accessioned2019-10-09T13:57:01Z
dc.date.issued2011
dc.identifier.citationStein, Andrew M., David A. Vader, David A. Weitz, and Leonard M. Sander. 2011. “The Micromechanics of Three-Dimensional Collagen-I Gels.” Complexity16 (4): 22–28. https://doi.org/10.1002/cplx.20332.
dc.identifier.issn1076-2787
dc.identifier.issn1099-0526
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:41511298*
dc.description.abstractWe study the micromechanics of collagen-I gel with the goal of bridging the gap between theory and experiment in the study of biopolymer networks. Three-dimensional images of fluorescently labeled collagen are obtained by confocal microscopy, and the network geometry is extracted using a 3D network skeletonization algorithm. Each fiber is modeled as an elastic beam that resists stretching and bending, and each crosslink is modeled as torsional spring. The stress-strain curves of networks at three different densities are compared with rheology measurements. The model shows good agreement with experiment, confirming that strain stiffening of collagen can be explained entirely by geometric realignment of the network, as opposed to entropic stiffening of individual fibers. The model also suggests that at small strains, crosslink deformation is the main contributer to network stiffness, whereas at large strains, fiber stretching dominates. As this modeling effort uses networks with realistic geometries, this analysis can ultimately serve as a tool for understanding how the mechanics of fibers and crosslinks at the microscopic level produce the macroscopic properties of the network.
dc.language.isoen_US
dc.publisherHindawi
dash.licenseLAA
dc.titleThe micromechanics of three-dimensional collagen-I gels
dc.typeJournal Article
dc.description.versionVersion of Record
dc.relation.journalComplexity
dash.depositing.authorWeitz, David A.::4c144b06be6d094b21dbe2dd12dbef76::600
dc.date.available2019-10-09T13:57:01Z
dash.workflow.comments1Science Serial ID 27304
dc.identifier.doi10.1002/cplx.20332
dash.source.volume16;4
dash.source.page22-28


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record