Nucleotide-dependent Domain Movement in the ATPase Domain of a Human Type IIA DNA Topoisomerase
Author
Wei, Hua
Ruthenburg, Alexander J.
Bechis, Seth K.
Verdine, Gregory L.
Published Version
https://doi.org/10.1074/jbc.M506520200Metadata
Show full item recordCitation
Wei, Hua, Alexander J. Ruthenburg, Seth K. Bechis, and Gregory L. Verdine. 2005. “Nucleotide-Dependent Domain Movement in the ATPase Domain of a Human Type IIA DNA Topoisomerase.” Journal of Biological Chemistry280 (44): 37041–47. https://doi.org/10.1074/jbc.M506520200.Abstract
Type IIA DNA topoisomerases play multiple essential roles in the management of higher-order DNA structure, including modulation of topological state, chromosome segregation, and chromatin condensation. These diverse physiologic functions are all accomplished through a common molecular mechanism, wherein the protein catalyzes transient cleavage of a DNA duplex ( the G-segment) to yield a double-stranded gap through which another duplex ( the T-segment) is passed. The overall process is orchestrated by the opening and closing of molecular "gates" in the topoisomerase structure, which is regulated by ATP binding, hydrolysis, and release of ADP and inorganic phosphate. Here we present two crystal structures of the ATPase domain of human DNA topoisomerase II alpha in different nucleotide-bound states. Comparison of these structures revealed rigid-body movement of the structural modules within the ATPase domain, suggestive of the motions of a molecular gate.Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41511303
Collections
- FAS Scholarly Articles [18153]
Contact administrator regarding this item (to report mistakes or request changes)