Show simple item record

dc.contributor.authorYuan, Junhua
dc.contributor.authorBerg, Howard C.
dc.date.accessioned2019-10-11T12:28:51Z
dc.date.issued2008
dc.identifier.citationYuan, J., and H. C. Berg. 2008. “Resurrection of the Flagellar Rotary Motor near Zero Load.” Proceedings of the National Academy of Sciences105 (4): 1182–85. https://doi.org/10.1073/pnas.0711539105.
dc.identifier.issn0027-8424
dc.identifier.issn0744-2831
dc.identifier.issn1091-6490
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:41534338*
dc.description.abstractFlagellated bacteria, such as Escherichia coli, are propelled by helical flagellar filaments, each driven at its base by a reversible rotary motor, powered by a transmembrane proton flux. Torque is generated by the interaction of stator proteins, MotA and MotB, with a rotor protein FliG. The physiology of the motor has been studied extensively in the regime of relatively high load and low speed, where it appears to operate close to thermodynamic equilibrium. Here, we describe an assay that allows systematic study of the motor near zero load, where proton translocation and movement of mechanical components are rate limiting. Sixty-nanometer-diameter gold spheres were attached to hooks of cells lacking flagellar,filaments, and light scattered from a sphere was monitored at the image plane of a microscope through a small pinhole. Paralyzed motors of cells carrying a motA point mutation were resurrected at 23 degrees C by expression of wild-type MotA, and speeds jumped from zero to a maximum value (approximate to 300 Hz) in one step. Thus, near zero load, the speed of the motor is independent of the number of torque-generating units. Evidently, the units act independently (they do not interfere with one another), and there are no intervals during Which a second unit can add to the speed generated by the first (the duty ratio is close to 1).
dc.language.isoen_US
dc.publisherNational Academy of Sciences
dash.licenseLAA
dc.titleResurrection of the flagellar rotary motor near zero load
dc.typeJournal Article
dc.description.versionVersion of Record
dc.relation.journalProceedings of the National Academy of Sciences of the United States of America
dash.depositing.authorBerg, Howard Curtis::246ef0f2a815e6b01ad2b2628664c858::600
dc.date.available2019-10-11T12:28:51Z
dash.workflow.comments1Science Serial ID 90297
dc.identifier.doi10.1073/pnas.0711539105
dash.source.volume105;4
dash.source.page1182


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record