Show simple item record

dc.contributor.authorHosu, Basarab
dc.contributor.authorNathan, Vedavalli
dc.contributor.authorBerg, Howard
dc.date.accessioned2019-10-11T12:29:05Z
dc.date.issued2016
dc.identifier.citationHosu, Basarab G., Vedavalli S. J. Nathan, and Howard C. Berg. 2016. “Internal and External Components of the Bacterial Flagellar Motor Rotate as a Unit.” Proceedings of the National Academy of Sciences113 (17): 4783–87. https://doi.org/10.1073/pnas.1511691113.
dc.identifier.issn0027-8424
dc.identifier.issn0744-2831
dc.identifier.issn1091-6490
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:41534375*
dc.description.abstractMost bacteria that swim, including Escherichia coli, are propelled by helical filaments, each driven at its base by a rotary motor powered by a proton or a sodium ion electrochemical gradient. Each motor contains a number of stator complexes, comprising 4MotA 2MotB or 4PomA 2PomB, proteins anchored to the rigid peptidoglycan layer of the cell wall. These proteins exert torque on a rotor that spans the inner membrane. A shaft connected to the rotor passes through the peptidoglycan and the outer membrane through bushings, the P and L rings, connecting to the filament by a flexible coupling known as the hook. Although the external components, the hook and the filament, are known to rotate, having been tethered to glass or marked by latex beads, the rotation of the internal components has remained only a reasonable assumption. Here, by using polarized light to bleach and probe an internal YFP-FliN fusion, we show that the innermost components of the cytoplasmic ring rotate at a rate similar to that of the hook.
dc.language.isoen_US
dc.publisherNational Academy of Sciences
dash.licenseLAA
dc.titleInternal and external components of the bacterial flagellar motor rotate as a unit
dc.typeJournal Article
dc.description.versionVersion of Record
dc.relation.journalProceedings of the National Academy of Sciences of the United States of America
dash.depositing.authorBerg, Howard Curtis::246ef0f2a815e6b01ad2b2628664c858::600
dc.date.available2019-10-11T12:29:05Z
dash.workflow.comments1Science Serial ID 92324
dc.identifier.doi10.1073/pnas.1511691113
dash.source.volume113;17
dash.source.page4783


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record