Constructing, verifying, and dissecting the folding transition state of chymotrypsin inhibitor 2 with all-atom simulations
View/ Open
Author
Li, Lewyn
Shakhnovich, Eugene
Published Version
https://doi.org/10.1073/pnas.241378398Metadata
Show full item recordCitation
Li, L., and E. I. Shakhnovich. 2001. “Constructing, Verifying, and Dissecting the Folding Transition State of Chymotrypsin Inhibitor 2 with All-Atom Simulations.” Proceedings of the National Academy of Sciences98 (23): 13014–18. https://doi.org/10.1073/pnas.241378398.Abstract
Experimentally, protein engineering and Phi -value analysis is the method of choice to characterize the structure in folding transition state ensemble (TSE) of any protein. Combining experimental phi values and computer simulations has led to a deeper understanding of how proteins fold. In this report, we construct the TSE of chymotrypsin inhibitor 2 from published phi values. Importantly, we verify, by means of multiple independent simulations, that the conformations in the TSE have a probability of approximate to0.5 to reach the native state rapidly, so the TSE consists of true transition states. This finding validates the use of transition state theory underlying all phi -value analyses. Also, we present a method to dissect and study the TSE by generating conformations that have a disrupted alpha -helix (alpha -disrupted states) or disordered beta -strands 3 and 4 (beta -disrupted states). Surprisingly, the a-disrupted states have a stronger tendency to fold than the beta -disrupted states, despite the higher phi values for the a-helix in the TSE. We give a plausible explanation for this result and discuss its implications on protein folding and design. Our study shows that, by using both experiments and computer simulations, we can gain many insights into protein folding.Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41534435
Collections
- FAS Scholarly Articles [18179]
Contact administrator regarding this item (to report mistakes or request changes)