Evolutionary dynamics of adult stem cells: Comparison of random and immortal-strand segregation mechanisms
View/ Open
Author
Tannenbaum, Emmanuel
Sherley, James L.
Shakhnovich, Eugene I.
Published Version
https://doi.org/10.1103/PhysRevE.71.041914Metadata
Show full item recordCitation
Tannenbaum, Emmanuel, James L. Sherley, and Eugene I. Shakhnovich. 2005. “Evolutionary Dynamics of Adult Stem Cells: Comparison of Random and Immortal-Strand Segregation Mechanisms.” Physical Review E71 (4): 041914. https://doi.org/10.1103/PhysRevE.71.041914.Abstract
This paper develops a point-mutation model describing the evolutionary dynamics of a population of adult stem cells. Such a model may prove useful for quantitative studies of tissue aging and the emergence of cancer. We consider two modes of chromosome segregation: (1) random segregation, where the daughter chromosomes of a given parent chromosome segregate randomly into the stem cell and its differentiating sister cell and (2) "immortal DNA strand" co-segregation, for which the stem cell retains the daughter chromosomes with the oldest parent strands. Immortal strand co-segregation is a mechanism, originally proposed by [Cairns Nature (London) 255, 197 (1975)], by which stem cells preserve the integrity of their genomes. For random segregation, we develop an ordered strand pair formulation of the dynamics, analogous to the ordered strand pair formalism developed for quasispecies dynamics involving semiconservative replication with imperfect lesion repair (in this context, lesion repair is taken to mean repair of postreplication base-pair mismatches). Interestingly, a similar formulation is possible with immortal strand co-segregation, despite the fact that this segregation mechanism is age dependent. From our model we are able to mathematically show that, when lesion repair is imperfect, then immortal strand co-segregation leads to better preservation of the stem cell lineage than random chromosome segregation. Furthermore, our model allows us to estimate the optimal lesion repair efficiency for preserving an adult stem cell population for a given period of time. For human stem cells, we obtain that mispaired bases still present after replication and cell division should be left untouched, to avoid potentially fixing a mutation in both DNA strands.Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41534506
Collections
- FAS Scholarly Articles [18145]
Contact administrator regarding this item (to report mistakes or request changes)