Conformational States of a Soluble, Uncleaved HIV-1 Envelope Trimer
View/ Open
Author
Liu, Yuhang
Pan, Junhua
Cai, Yongfei
Grigorieff, Nikolaus
Harrison, Stephen
Chen, Bing
Published Version
https://doi.org/10.1128/JVI.00175-17Metadata
Show full item recordCitation
Liu, Yuhang, Junhua Pan, Yongfei Cai, Nikolaus Grigorieff, Stephen C. Harrison, and Bing Chen. 2017. “Conformational States of a Soluble, Uncleaved HIV-1 Envelope Trimer.” Edited by Wesley I. Sundquist. Journal of Virology 91 (10): e00175-17, /jvi/91/10/e00175-17.atom. doi:10.1128/JVI.00175-17.Abstract
The HIV-1 envelope spike [Env; trimeric (gp160)(3) cleaved to (gp120/gp41) 3] induces membrane fusion, leading to viral entry. It is also the viral component targeted by neutralizing antibodies. Vaccine development requires production, in quantities suitable for clinical studies, of a recombinant form that resembles functional Env. HIV-1 gp140 trimers-the uncleaved ectodomains of (gp160)(3)-from a few selected viral isolates adopt a compact conformation with many antigenic properties of native Env spikes. One is currently being evaluated in a clinical trial. We report here low-resolution (20 angstrom) electron cryomicroscopy (cryoEM) structures of this gp140 trimer, which adopts two principal conformations, one closed and the other slightly open. The former is indistinguishable at this resolution from those adopted by a stabilized, cleaved trimer (SOSIP) or by a membrane-bound Env trimer with a truncated cytoplasmic tail (Env.CT). The latter conformation is closer to a partially open Env trimer than to the fully open conformation induced by CD4. These results show that a stable, uncleaved HIV-1 gp140 trimer has a compact structure close to that of native Env. IMPORTANCE Development of any HIV vaccine with a protein component (for either priming or boosting) requires production of a recombinant form to mimic the trimeric, functional HIV-1 envelope spike in quantities suitable for clinical studies. Our understanding of the envelope structure has depended in part on a cleaved, soluble trimer, known as SOSIP. 664, stabilized by several modifications, including an engineered disulfide. This construct, which is difficult to produce in large quantities, has yet to induce better antibody responses than those to other envelope-based immunogens, even in animal models. The uncleaved ectodomain of the envelope protein, called gp140, has also been made as a soluble form to mimic the native Env present on the virion surface. Most HIV-1 gp140 preparations are not stable, however, and have an inhomogeneous conformation. The results presented here show that gp140 preparations from suitable isolates can adopt a compact, native-like structure, supporting its use as a vaccine candidate.Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41542745
Collections
- HMS Scholarly Articles [17293]
Contact administrator regarding this item (to report mistakes or request changes)