Scaling rules for diffusive drug delivery in tumor and normal tissues
View/ Open
Author
Baish, James W.
Stylianopoulos, Triantafyllos
Lanning, Ryan M.
Kamoun, Walid S.
Fukumura, Dai
Munn, Lance L.
Jain, Rakesh K.
Published Version
https://doi.org/10.1073/pnas.1018154108Metadata
Show full item recordCitation
Baish, James W., Triantafyllos Stylianopoulos, Ryan M. Lanning, Walid S. Kamoun, Dai Fukumura, Lance L. Munn, and Rakesh K. Jain. 2011. “Scaling Rules for Diffusive Drug Delivery in Tumor and Normal Tissues.” Proceedings of the National Academy of Sciences 108 (5): 1799–1803. doi:10.1073/pnas.1018154108.Abstract
Delivery of blood-borne molecules and nanoparticles from the vasculature to cells in the tissue differs dramatically between tumor and normal tissues due to differences in their vascular architectures. Here we show that two simple measures of vascular geometry-delta(max) and lambda-readily obtained from vascular images, capture these differences and link vascular structure to delivery in both tissue types. The longest time needed to bring materials to their destination scales with the square of delta(max), the maximum distance in the tissue from the nearest blood vessel, whereas., a measure of the shape of the spaces between vessels, determines the rate of delivery for shorter times. Our results are useful for evaluating how new therapeutic agents that inhibit or stimulate vascular growth alter the functional efficiency of the vasculature and more broadly for analysis of diffusion in irregularly shaped domains.Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41542779
Collections
- HMS Scholarly Articles [18278]
Contact administrator regarding this item (to report mistakes or request changes)