Development of heart valves requires Gata4 expression in endothelial-derived cells
View/ Open
Author
Rivera-Feliciano, José
Lee, Kyu-Ho
Kong, Sek Won
Rajagopal, Satish
Ma, Qing
Springer, Zhangli
Izumo, Seigo
Tabin, Clifford J.
Pu, William T.
Published Version
https://doi.org/10.1242/dev.02519Metadata
Show full item recordCitation
Rivera-Feliciano, J. 2006. “Development of Heart Valves Requires Gata4 Expression in Endothelial-Derived Cells.” Development 133 (18): 3607–18. doi:10.1242/dev.02519.Abstract
Cardiac malformations due to aberrant development of the atrioventricular (AV) valves are among the most common forms of congenital heart disease. At localized swellings of extracellular matrix known as the endocardial cushions, the endothelial lining of the heart undergoes an epithelial to mesenchymal transition (EMT) to form the mesenchymal progenitors of the AV valves. Further growth and differentiation of these mesenchymal precursors results in the formation of portions of the atrial and ventricular septae, and the generation of thin, pliable valves. Gata4, which encodes a zinc finger transcription factor, is expressed in the endothelium and mesenchyme of the AV valves. Using a Tie2-Cre transgene, we selectively inactivated Gata4 within endothelial-derived cells. Mutant endothelium failed to undergo EMT, resulting in hypocellular cushions. Mutant cushions had decreased levels of Erbb3, an EGF-family receptor essential for EMT in the atrioventricular cushions. In Gata4 mutant embryos, Erbb3 downregulation was associated with impaired activation of Erk, which is also required for EMT. Expression of a Gata4 mutant protein defective in interaction with Friend of Gata (FOG) cofactors rescued the EMT defect, but resulted in a decreased proliferation of mesenchyme and hypoplastic cushions that failed to septate the ventricular inlet. We demonstrate two novel functions of Gata4 in development of the AV valves. First, Gata4 functions as an upstream regulator of an Erbb3-Erk pathway necessary for EMT, and second, Gata4 acts to promote cushion mesenchyme growth and remodeling.Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41543027
Collections
- HMS Scholarly Articles [17842]
Contact administrator regarding this item (to report mistakes or request changes)