Modeling Dependent Gene Expression
View/ Open
Author
Telesca, Donatello
Müller, Peter
Parmigiani, Giovanni
Freedman, Ralph
Published Version
https://doi.org/10.1214/11-AOAS525Metadata
Show full item recordCitation
Telesca, Donatello, Peter Müller, Giovanni Parmigiani, and Ralph S. Freedman. 2012. “Modeling Dependent Gene Expression.” The Annals of Applied Statistics 6 (2): 542–60. https://doi.org/10.1214/11-aoas525.Abstract
In this paper we propose a Bayesian approach for inference about dependence of high throughput gene expression. Our goals are to use prior knowledge about pathways to anchor inference about dependence among genes; to account for this dependence while making inferences about differences in mean expression across phenotypes; and to explore differences in the dependence itself across phenotypes. Useful features of the proposed approach are a model-based parsimonious representation of expression as an ordinal outcome, a novel and flexible representation of prior information on the nature of dependencies, and the use of a coherent probability model over both the structure and strength of the dependencies of interest. We evaluate our approach through simulations and in the analysis of data on expression of genes in the Complement and Coagulation Cascade pathway in ovarian cancer.Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41552044
Collections
- SPH Scholarly Articles [6269]
Contact administrator regarding this item (to report mistakes or request changes)