Machine Learning for Flavor Development
Citation
Xu, David. 2019. Machine Learning for Flavor Development. Bachelor's thesis, Harvard College.Abstract
Currently, most flavor development is performed by chemists who experimentally iterate many times to find flavors that best fit specified requirements. In this study, three potential algorithms for automating and accelerating this process are examined and implemented, and the results are analyzed. The apriori algorithm, which generates probabilistic association rules, fails because it only predicts the coexistence of high-frequency features. The generative adversarial network (GAN) fails because the generator only exploits a small part of the solution space. However, the variational autoencoder (VAE) successfully recovers purposely omitted features 95.6% of the time, making it the most promising algorithm.Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41940965
Collections
- FAS Theses and Dissertations [5858]
Contact administrator regarding this item (to report mistakes or request changes)